Metamath Proof Explorer


Theorem snclseqg

Description: The coset of the closure of the identity is the closure of a point. (Contributed by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses snclseqg.x X=BaseG
snclseqg.j J=TopOpenG
snclseqg.z 0˙=0G
snclseqg.r ˙=G~QGS
snclseqg.s S=clsJ0˙
Assertion snclseqg GTopGrpAXA˙=clsJA

Proof

Step Hyp Ref Expression
1 snclseqg.x X=BaseG
2 snclseqg.j J=TopOpenG
3 snclseqg.z 0˙=0G
4 snclseqg.r ˙=G~QGS
5 snclseqg.s S=clsJ0˙
6 5 imaeq2i xXA+GxS=xXA+GxclsJ0˙
7 tgpgrp GTopGrpGGrp
8 7 adantr GTopGrpAXGGrp
9 2 1 tgptopon GTopGrpJTopOnX
10 9 adantr GTopGrpAXJTopOnX
11 topontop JTopOnXJTop
12 10 11 syl GTopGrpAXJTop
13 1 3 grpidcl GGrp0˙X
14 8 13 syl GTopGrpAX0˙X
15 14 snssd GTopGrpAX0˙X
16 toponuni JTopOnXX=J
17 10 16 syl GTopGrpAXX=J
18 15 17 sseqtrd GTopGrpAX0˙J
19 eqid J=J
20 19 clsss3 JTop0˙JclsJ0˙J
21 12 18 20 syl2anc GTopGrpAXclsJ0˙J
22 21 17 sseqtrrd GTopGrpAXclsJ0˙X
23 5 22 eqsstrid GTopGrpAXSX
24 simpr GTopGrpAXAX
25 eqid +G=+G
26 1 4 25 eqglact GGrpSXAXA˙=xXA+GxS
27 8 23 24 26 syl3anc GTopGrpAXA˙=xXA+GxS
28 eqid xXA+Gx=xXA+Gx
29 28 1 25 2 tgplacthmeo GTopGrpAXxXA+GxJHomeoJ
30 19 hmeocls xXA+GxJHomeoJ0˙JclsJxXA+Gx0˙=xXA+GxclsJ0˙
31 29 18 30 syl2anc GTopGrpAXclsJxXA+Gx0˙=xXA+GxclsJ0˙
32 6 27 31 3eqtr4a GTopGrpAXA˙=clsJxXA+Gx0˙
33 df-ima xXA+Gx0˙=ranxXA+Gx0˙
34 15 resmptd GTopGrpAXxXA+Gx0˙=x0˙A+Gx
35 34 rneqd GTopGrpAXranxXA+Gx0˙=ranx0˙A+Gx
36 33 35 eqtrid GTopGrpAXxXA+Gx0˙=ranx0˙A+Gx
37 3 fvexi 0˙V
38 oveq2 x=0˙A+Gx=A+G0˙
39 38 eqeq2d x=0˙y=A+Gxy=A+G0˙
40 37 39 rexsn x0˙y=A+Gxy=A+G0˙
41 1 25 3 grprid GGrpAXA+G0˙=A
42 7 41 sylan GTopGrpAXA+G0˙=A
43 42 eqeq2d GTopGrpAXy=A+G0˙y=A
44 40 43 bitrid GTopGrpAXx0˙y=A+Gxy=A
45 44 abbidv GTopGrpAXy|x0˙y=A+Gx=y|y=A
46 eqid x0˙A+Gx=x0˙A+Gx
47 46 rnmpt ranx0˙A+Gx=y|x0˙y=A+Gx
48 df-sn A=y|y=A
49 45 47 48 3eqtr4g GTopGrpAXranx0˙A+Gx=A
50 36 49 eqtrd GTopGrpAXxXA+Gx0˙=A
51 50 fveq2d GTopGrpAXclsJxXA+Gx0˙=clsJA
52 32 51 eqtrd GTopGrpAXA˙=clsJA