Metamath Proof Explorer


Theorem sprsymrelf1lem

Description: Lemma for sprsymrelf1 . (Contributed by AV, 22-Nov-2021)

Ref Expression
Assertion sprsymrelf1lem aPairsVbPairsVxy|cac=xy=xy|cbc=xyab

Proof

Step Hyp Ref Expression
1 prssspr aPairsVpaiVjVp=ij
2 1 ad4ant14 aPairsVbPairsVxy|cac=xy=xy|cbc=xypaiVjVp=ij
3 simpr iVjVp=ijp=ij
4 3 adantr iVjVp=ijaPairsVbPairsVxy|cac=xy=xy|cbc=xyp=ij
5 4 eleq1d iVjVp=ijaPairsVbPairsVxy|cac=xy=xy|cbc=xypaija
6 simpr iVjVp=ijijaija
7 eqeq1 c=ijc=ijij=ij
8 7 adantl iVjVp=ijijac=ijc=ijij=ij
9 eqidd iVjVp=ijijaij=ij
10 6 8 9 rspcedvd iVjVp=ijijacac=ij
11 10 adantlr iVjVp=ijaPairsVbPairsVxy|cac=xy=xy|cbc=xyijacac=ij
12 preq12 x=iy=jxy=ij
13 12 eqeq2d x=iy=jc=xyc=ij
14 13 rexbidv x=iy=jcac=xycac=ij
15 14 opelopabga iVjVijxy|cac=xycac=ij
16 15 bicomd iVjVcac=ijijxy|cac=xy
17 16 ad3antrrr iVjVp=ijaPairsVbPairsVxy|cac=xy=xy|cbc=xyijacac=ijijxy|cac=xy
18 11 17 mpbid iVjVp=ijaPairsVbPairsVxy|cac=xy=xy|cbc=xyijaijxy|cac=xy
19 18 ex iVjVp=ijaPairsVbPairsVxy|cac=xy=xy|cbc=xyijaijxy|cac=xy
20 5 19 sylbid iVjVp=ijaPairsVbPairsVxy|cac=xy=xy|cbc=xypaijxy|cac=xy
21 eleq2 xy|cac=xy=xy|cbc=xyijxy|cac=xyijxy|cbc=xy
22 21 ad2antll iVjVp=ijaPairsVbPairsVxy|cac=xy=xy|cbc=xyijxy|cac=xyijxy|cbc=xy
23 13 rexbidv x=iy=jcbc=xycbc=ij
24 23 opelopabga iVjVijxy|cbc=xycbc=ij
25 24 el2v ijxy|cbc=xycbc=ij
26 eqtr3 p=ijc=ijp=c
27 26 equcomd p=ijc=ijc=p
28 27 eleq1d p=ijc=ijcbpb
29 28 biimpd p=ijc=ijcbpb
30 29 ex p=ijc=ijcbpb
31 30 com13 cbc=ijp=ijpb
32 31 imp cbc=ijp=ijpb
33 32 rexlimiva cbc=ijp=ijpb
34 33 com12 p=ijcbc=ijpb
35 34 adantl iVjVp=ijcbc=ijpb
36 35 adantr iVjVp=ijaPairsVbPairsVxy|cac=xy=xy|cbc=xycbc=ijpb
37 25 36 biimtrid iVjVp=ijaPairsVbPairsVxy|cac=xy=xy|cbc=xyijxy|cbc=xypb
38 22 37 sylbid iVjVp=ijaPairsVbPairsVxy|cac=xy=xy|cbc=xyijxy|cac=xypb
39 20 38 syld iVjVp=ijaPairsVbPairsVxy|cac=xy=xy|cbc=xypapb
40 39 expimpd iVjVp=ijaPairsVbPairsVxy|cac=xy=xy|cbc=xypapb
41 40 rexlimdva2 iVjVp=ijaPairsVbPairsVxy|cac=xy=xy|cbc=xypapb
42 41 rexlimiv iVjVp=ijaPairsVbPairsVxy|cac=xy=xy|cbc=xypapb
43 2 42 mpcom aPairsVbPairsVxy|cac=xy=xy|cbc=xypapb
44 43 ex aPairsVbPairsVxy|cac=xy=xy|cbc=xypapb
45 44 ssrdv aPairsVbPairsVxy|cac=xy=xy|cbc=xyab
46 45 ex aPairsVbPairsVxy|cac=xy=xy|cbc=xyab