Description: Lemma for sprsymrelf1 . (Contributed by AV, 22-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | sprsymrelf1lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssspr | |
|
2 | 1 | ad4ant14 | |
3 | simpr | |
|
4 | 3 | adantr | |
5 | 4 | eleq1d | |
6 | simpr | |
|
7 | eqeq1 | |
|
8 | 7 | adantl | |
9 | eqidd | |
|
10 | 6 8 9 | rspcedvd | |
11 | 10 | adantlr | |
12 | preq12 | |
|
13 | 12 | eqeq2d | |
14 | 13 | rexbidv | |
15 | 14 | opelopabga | |
16 | 15 | bicomd | |
17 | 16 | ad3antrrr | |
18 | 11 17 | mpbid | |
19 | 18 | ex | |
20 | 5 19 | sylbid | |
21 | eleq2 | |
|
22 | 21 | ad2antll | |
23 | 13 | rexbidv | |
24 | 23 | opelopabga | |
25 | 24 | el2v | |
26 | eqtr3 | |
|
27 | 26 | equcomd | |
28 | 27 | eleq1d | |
29 | 28 | biimpd | |
30 | 29 | ex | |
31 | 30 | com13 | |
32 | 31 | imp | |
33 | 32 | rexlimiva | |
34 | 33 | com12 | |
35 | 34 | adantl | |
36 | 35 | adantr | |
37 | 25 36 | biimtrid | |
38 | 22 37 | sylbid | |
39 | 20 38 | syld | |
40 | 39 | expimpd | |
41 | 40 | rexlimdva2 | |
42 | 41 | rexlimiv | |
43 | 2 42 | mpcom | |
44 | 43 | ex | |
45 | 44 | ssrdv | |
46 | 45 | ex | |