Description: The mapping F is a function from the subsets of the set of pairs over a fixed set V onto the symmetric relations R on the fixed set V . (Contributed by AV, 23-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sprsymrelf.p | |
|
sprsymrelf.r | |
||
sprsymrelf.f | |
||
Assertion | sprsymrelfo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sprsymrelf.p | |
|
2 | sprsymrelf.r | |
|
3 | sprsymrelf.f | |
|
4 | 1 2 3 | sprsymrelf | |
5 | 4 | a1i | |
6 | breq | |
|
7 | breq | |
|
8 | 6 7 | bibi12d | |
9 | 8 | 2ralbidv | |
10 | 9 2 | elrab2 | |
11 | eqid | |
|
12 | 11 | sprsymrelfolem1 | |
13 | 12 1 | eleqtrri | |
14 | 13 | a1i | |
15 | rexeq | |
|
16 | 15 | opabbidv | |
17 | 16 | eqeq2d | |
18 | 17 | adantl | |
19 | velpw | |
|
20 | xpss | |
|
21 | sstr2 | |
|
22 | 20 21 | mpi | |
23 | df-rel | |
|
24 | 22 23 | sylibr | |
25 | 24 | adantl | |
26 | dfrel4v | |
|
27 | nfv | |
|
28 | nfra1 | |
|
29 | 27 28 | nfan | |
30 | nfv | |
|
31 | nfra2w | |
|
32 | 30 31 | nfan | |
33 | 11 | sprsymrelfolem2 | |
34 | 33 | 3expa | |
35 | 29 32 34 | opabbid | |
36 | 35 | eqeq2d | |
37 | 36 | biimpd | |
38 | 37 | ex | |
39 | 38 | com23 | |
40 | 26 39 | biimtrid | |
41 | 25 40 | mpd | |
42 | 41 | expcom | |
43 | 42 | com23 | |
44 | 19 43 | sylbi | |
45 | 44 | imp31 | |
46 | 14 18 45 | rspcedvd | |
47 | 46 | ex | |
48 | 10 47 | sylbi | |
49 | 48 | impcom | |
50 | 1 2 3 | sprsymrelfv | |
51 | 50 | adantl | |
52 | 51 | eqeq2d | |
53 | 52 | rexbidva | |
54 | 49 53 | mpbird | |
55 | 54 | ralrimiva | |
56 | dffo3 | |
|
57 | 5 55 56 | sylanbrc | |