Description: Lemma for sprsymrelf and sprsymrelfv . (Contributed by AV, 19-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | sprsymrelfvlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | eleq1 | |
|
3 | prsssprel | |
|
4 | 3 | 3exp | |
5 | 4 | com13 | |
6 | 5 | el2v | |
7 | 2 6 | syl6bi | |
8 | 7 | com12 | |
9 | 8 | rexlimiv | |
10 | 9 | com12 | |
11 | 10 | adantl | |
12 | 11 | imp | |
13 | 12 | simpld | |
14 | 12 | simprd | |
15 | 1 1 13 14 | opabex2 | |
16 | elopab | |
|
17 | 9 | adantl | |
18 | 17 | adantld | |
19 | 18 | imp | |
20 | eleq1 | |
|
21 | 20 | ad2antrr | |
22 | opelxp | |
|
23 | 21 22 | bitrdi | |
24 | 19 23 | mpbird | |
25 | 24 | ex | |
26 | 25 | exlimivv | |
27 | 16 26 | sylbi | |
28 | 27 | com12 | |
29 | 28 | ssrdv | |
30 | 15 29 | elpwd | |
31 | 30 | ex | |
32 | fvprc | |
|
33 | 32 | sseq2d | |
34 | ss0b | |
|
35 | 33 34 | bitrdi | |
36 | rex0 | |
|
37 | rexeq | |
|
38 | 36 37 | mtbiri | |
39 | 38 | alrimivv | |
40 | opab0 | |
|
41 | 39 40 | sylibr | |
42 | 0elpw | |
|
43 | 41 42 | eqeltrdi | |
44 | 35 43 | syl6bi | |
45 | 31 44 | pm2.61i | |