Metamath Proof Explorer


Theorem sprsymrelfvlem

Description: Lemma for sprsymrelf and sprsymrelfv . (Contributed by AV, 19-Nov-2021)

Ref Expression
Assertion sprsymrelfvlem PPairsVxy|cPc=xy𝒫V×V

Proof

Step Hyp Ref Expression
1 simpl VVPPairsVVV
2 eleq1 c=xycPxyP
3 prsssprel PPairsVxyPxVyVxVyV
4 3 3exp PPairsVxyPxVyVxVyV
5 4 com13 xVyVxyPPPairsVxVyV
6 5 el2v xyPPPairsVxVyV
7 2 6 syl6bi c=xycPPPairsVxVyV
8 7 com12 cPc=xyPPairsVxVyV
9 8 rexlimiv cPc=xyPPairsVxVyV
10 9 com12 PPairsVcPc=xyxVyV
11 10 adantl VVPPairsVcPc=xyxVyV
12 11 imp VVPPairsVcPc=xyxVyV
13 12 simpld VVPPairsVcPc=xyxV
14 12 simprd VVPPairsVcPc=xyyV
15 1 1 13 14 opabex2 VVPPairsVxy|cPc=xyV
16 elopab pxy|cPc=xyxyp=xycPc=xy
17 9 adantl p=xycPc=xyPPairsVxVyV
18 17 adantld p=xycPc=xyVVPPairsVxVyV
19 18 imp p=xycPc=xyVVPPairsVxVyV
20 eleq1 p=xypV×VxyV×V
21 20 ad2antrr p=xycPc=xyVVPPairsVpV×VxyV×V
22 opelxp xyV×VxVyV
23 21 22 bitrdi p=xycPc=xyVVPPairsVpV×VxVyV
24 19 23 mpbird p=xycPc=xyVVPPairsVpV×V
25 24 ex p=xycPc=xyVVPPairsVpV×V
26 25 exlimivv xyp=xycPc=xyVVPPairsVpV×V
27 16 26 sylbi pxy|cPc=xyVVPPairsVpV×V
28 27 com12 VVPPairsVpxy|cPc=xypV×V
29 28 ssrdv VVPPairsVxy|cPc=xyV×V
30 15 29 elpwd VVPPairsVxy|cPc=xy𝒫V×V
31 30 ex VVPPairsVxy|cPc=xy𝒫V×V
32 fvprc ¬VVPairsV=
33 32 sseq2d ¬VVPPairsVP
34 ss0b PP=
35 33 34 bitrdi ¬VVPPairsVP=
36 rex0 ¬cc=xy
37 rexeq P=cPc=xycc=xy
38 36 37 mtbiri P=¬cPc=xy
39 38 alrimivv P=xy¬cPc=xy
40 opab0 xy|cPc=xy=xy¬cPc=xy
41 39 40 sylibr P=xy|cPc=xy=
42 0elpw 𝒫V×V
43 41 42 eqeltrdi P=xy|cPc=xy𝒫V×V
44 35 43 syl6bi ¬VVPPairsVxy|cPc=xy𝒫V×V
45 31 44 pm2.61i PPairsVxy|cPc=xy𝒫V×V