Metamath Proof Explorer


Theorem ssdec

Description: Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses ssdec.1 φNM
ssdec.2 φmM..^NFm+1Fm
Assertion ssdec φFNFM

Proof

Step Hyp Ref Expression
1 ssdec.1 φNM
2 ssdec.2 φmM..^NFm+1Fm
3 eluzel2 NMM
4 1 3 syl φM
5 eluzelz NMN
6 1 5 syl φN
7 4 6 jca φMN
8 eluzle NMMN
9 1 8 syl φMN
10 6 zred φN
11 10 leidd φNN
12 6 9 11 3jca φNMNNN
13 7 12 jca φMNNMNNN
14 fveq2 n=MFn=FM
15 14 sseq1d n=MFnFMFMFM
16 15 imbi2d n=MφFnFMφFMFM
17 fveq2 n=mFn=Fm
18 17 sseq1d n=mFnFMFmFM
19 18 imbi2d n=mφFnFMφFmFM
20 fveq2 n=m+1Fn=Fm+1
21 20 sseq1d n=m+1FnFMFm+1FM
22 21 imbi2d n=m+1φFnFMφFm+1FM
23 fveq2 n=NFn=FN
24 23 sseq1d n=NFnFMFNFM
25 24 imbi2d n=NφFnFMφFNFM
26 ssidd φFMFM
27 26 a1i MNMNφFMFM
28 simpr MNmMmm<Nφφ
29 simplll MNmMmm<NφM
30 simplr1 MNmMmm<Nφm
31 simplr2 MNmMmm<NφMm
32 29 30 31 3jca MNmMmm<NφMmMm
33 eluz2 mMMmMm
34 32 33 sylibr MNmMmm<NφmM
35 simpllr MNmMmm<NφN
36 simplr3 MNmMmm<Nφm<N
37 34 35 36 3jca MNmMmm<NφmMNm<N
38 elfzo2 mM..^NmMNm<N
39 37 38 sylibr MNmMmm<NφmM..^N
40 28 39 2 syl2anc MNmMmm<NφFm+1Fm
41 40 3adant2 MNmMmm<NφFmFMφFm+1Fm
42 simpr φFmFMφφ
43 simpl φFmFMφφFmFM
44 pm3.35 φφFmFMFmFM
45 42 43 44 syl2anc φFmFMφFmFM
46 45 3adant1 MNmMmm<NφFmFMφFmFM
47 41 46 sstrd MNmMmm<NφFmFMφFm+1FM
48 47 3exp MNmMmm<NφFmFMφFm+1FM
49 16 19 22 25 27 48 fzind MNNMNNNφFNFM
50 13 49 mpcom φFNFM