Description: Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ssdec.1 | |
|
ssdec.2 | |
||
Assertion | ssdec | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdec.1 | |
|
2 | ssdec.2 | |
|
3 | eluzel2 | |
|
4 | 1 3 | syl | |
5 | eluzelz | |
|
6 | 1 5 | syl | |
7 | 4 6 | jca | |
8 | eluzle | |
|
9 | 1 8 | syl | |
10 | 6 | zred | |
11 | 10 | leidd | |
12 | 6 9 11 | 3jca | |
13 | 7 12 | jca | |
14 | fveq2 | |
|
15 | 14 | sseq1d | |
16 | 15 | imbi2d | |
17 | fveq2 | |
|
18 | 17 | sseq1d | |
19 | 18 | imbi2d | |
20 | fveq2 | |
|
21 | 20 | sseq1d | |
22 | 21 | imbi2d | |
23 | fveq2 | |
|
24 | 23 | sseq1d | |
25 | 24 | imbi2d | |
26 | ssidd | |
|
27 | 26 | a1i | |
28 | simpr | |
|
29 | simplll | |
|
30 | simplr1 | |
|
31 | simplr2 | |
|
32 | 29 30 31 | 3jca | |
33 | eluz2 | |
|
34 | 32 33 | sylibr | |
35 | simpllr | |
|
36 | simplr3 | |
|
37 | 34 35 36 | 3jca | |
38 | elfzo2 | |
|
39 | 37 38 | sylibr | |
40 | 28 39 2 | syl2anc | |
41 | 40 | 3adant2 | |
42 | simpr | |
|
43 | simpl | |
|
44 | pm3.35 | |
|
45 | 42 43 44 | syl2anc | |
46 | 45 | 3adant1 | |
47 | 41 46 | sstrd | |
48 | 47 | 3exp | |
49 | 16 19 22 25 27 48 | fzind | |
50 | 13 49 | mpcom | |