Metamath Proof Explorer


Theorem ssfzunsnext

Description: A subset of a finite sequence of integers extended by an integer is a subset of a (possibly extended) finite sequence of integers. (Contributed by AV, 13-Nov-2021)

Ref Expression
Assertion ssfzunsnext SMNMNISIifIMIMifINNI

Proof

Step Hyp Ref Expression
1 simpl SMNMNISMN
2 simp3 MNII
3 simp1 MNIM
4 2 3 ifcld MNIifIMIM
5 4 adantr MNIkMNifIMIM
6 simp2 MNIN
7 6 2 ifcld MNIifINNI
8 7 adantr MNIkMNifINNI
9 elfzelz kMNk
10 9 adantl MNIkMNk
11 4 zred MNIifIMIM
12 11 adantr MNIkMNifIMIM
13 zre MM
14 13 3ad2ant1 MNIM
15 14 adantr MNIkMNM
16 9 zred kMNk
17 16 adantl MNIkMNk
18 zre II
19 13 18 anim12i MIMI
20 19 ancomd MIIM
21 20 3adant2 MNIIM
22 21 adantr MNIkMNIM
23 min2 IMifIMIMM
24 22 23 syl MNIkMNifIMIMM
25 elfzle1 kMNMk
26 25 adantl MNIkMNMk
27 12 15 17 24 26 letrd MNIkMNifIMIMk
28 zre NN
29 28 3ad2ant2 MNIN
30 29 adantr MNIkMNN
31 7 zred MNIifINNI
32 31 adantr MNIkMNifINNI
33 elfzle2 kMNkN
34 33 adantl MNIkMNkN
35 28 18 anim12i NINI
36 35 3adant1 MNINI
37 36 ancomd MNIIN
38 max2 INNifINNI
39 37 38 syl MNINifINNI
40 39 adantr MNIkMNNifINNI
41 17 30 32 34 40 letrd MNIkMNkifINNI
42 5 8 10 27 41 elfzd MNIkMNkifIMIMifINNI
43 42 ex MNIkMNkifIMIMifINNI
44 43 ssrdv MNIMNifIMIMifINNI
45 44 adantl SMNMNIMNifIMIMifINNI
46 1 45 sstrd SMNMNISifIMIMifINNI
47 4 adantl SMNMNIifIMIM
48 7 adantl SMNMNIifINNI
49 2 adantl SMNMNII
50 19 3adant2 MNIMI
51 50 adantl SMNMNIMI
52 51 ancomd SMNMNIIM
53 min1 IMifIMIMI
54 52 53 syl SMNMNIifIMIMI
55 36 adantl SMNMNINI
56 55 ancomd SMNMNIIN
57 max1 INIifINNI
58 56 57 syl SMNMNIIifINNI
59 47 48 49 54 58 elfzd SMNMNIIifIMIMifINNI
60 59 snssd SMNMNIIifIMIMifINNI
61 46 60 unssd SMNMNISIifIMIMifINNI