Metamath Proof Explorer


Theorem sspmval

Description: Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses sspm.y Y=BaseSetW
sspm.m M=-vU
sspm.l L=-vW
sspm.h H=SubSpU
Assertion sspmval UNrmCVecWHAYBYALB=AMB

Proof

Step Hyp Ref Expression
1 sspm.y Y=BaseSetW
2 sspm.m M=-vU
3 sspm.l L=-vW
4 sspm.h H=SubSpU
5 4 sspnv UNrmCVecWHWNrmCVec
6 neg1cn 1
7 eqid 𝑠OLDW=𝑠OLDW
8 1 7 nvscl WNrmCVec1BY-1𝑠OLDWBY
9 6 8 mp3an2 WNrmCVecBY-1𝑠OLDWBY
10 9 ex WNrmCVecBY-1𝑠OLDWBY
11 5 10 syl UNrmCVecWHBY-1𝑠OLDWBY
12 11 anim2d UNrmCVecWHAYBYAY-1𝑠OLDWBY
13 12 imp UNrmCVecWHAYBYAY-1𝑠OLDWBY
14 eqid +vU=+vU
15 eqid +vW=+vW
16 1 14 15 4 sspgval UNrmCVecWHAY-1𝑠OLDWBYA+vW-1𝑠OLDWB=A+vU-1𝑠OLDWB
17 13 16 syldan UNrmCVecWHAYBYA+vW-1𝑠OLDWB=A+vU-1𝑠OLDWB
18 eqid 𝑠OLDU=𝑠OLDU
19 1 18 7 4 sspsval UNrmCVecWH1BY-1𝑠OLDWB=-1𝑠OLDUB
20 6 19 mpanr1 UNrmCVecWHBY-1𝑠OLDWB=-1𝑠OLDUB
21 20 adantrl UNrmCVecWHAYBY-1𝑠OLDWB=-1𝑠OLDUB
22 21 oveq2d UNrmCVecWHAYBYA+vU-1𝑠OLDWB=A+vU-1𝑠OLDUB
23 17 22 eqtrd UNrmCVecWHAYBYA+vW-1𝑠OLDWB=A+vU-1𝑠OLDUB
24 1 15 7 3 nvmval WNrmCVecAYBYALB=A+vW-1𝑠OLDWB
25 24 3expb WNrmCVecAYBYALB=A+vW-1𝑠OLDWB
26 5 25 sylan UNrmCVecWHAYBYALB=A+vW-1𝑠OLDWB
27 eqid BaseSetU=BaseSetU
28 27 1 4 sspba UNrmCVecWHYBaseSetU
29 28 sseld UNrmCVecWHAYABaseSetU
30 28 sseld UNrmCVecWHBYBBaseSetU
31 29 30 anim12d UNrmCVecWHAYBYABaseSetUBBaseSetU
32 31 imp UNrmCVecWHAYBYABaseSetUBBaseSetU
33 27 14 18 2 nvmval UNrmCVecABaseSetUBBaseSetUAMB=A+vU-1𝑠OLDUB
34 33 3expb UNrmCVecABaseSetUBBaseSetUAMB=A+vU-1𝑠OLDUB
35 34 adantlr UNrmCVecWHABaseSetUBBaseSetUAMB=A+vU-1𝑠OLDUB
36 32 35 syldan UNrmCVecWHAYBYAMB=A+vU-1𝑠OLDUB
37 23 26 36 3eqtr4d UNrmCVecWHAYBYALB=AMB