Metamath Proof Explorer


Theorem ssscongptld

Description: If two triangles have equal sides, one angle in one triangle has the same cosine as the corresponding angle in the other triangle. This is a partial form of the SSS congruence theorem.

This theorem is proven by using lawcos on both triangles to express one side in terms of the other two, and then equating these expressions and reducing this algebraically to get an equality of cosines of angles. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses ssscongptld.angdef F=x0,y0logyx
ssscongptld.1 φA
ssscongptld.2 φB
ssscongptld.3 φC
ssscongptld.4 φD
ssscongptld.5 φE
ssscongptld.6 φG
ssscongptld.7 φAB
ssscongptld.8 φBC
ssscongptld.9 φDE
ssscongptld.10 φEG
ssscongptld.11 φAB=DE
ssscongptld.12 φBC=EG
ssscongptld.13 φCA=GD
Assertion ssscongptld φcosABFCB=cosDEFGE

Proof

Step Hyp Ref Expression
1 ssscongptld.angdef F=x0,y0logyx
2 ssscongptld.1 φA
3 ssscongptld.2 φB
4 ssscongptld.3 φC
5 ssscongptld.4 φD
6 ssscongptld.5 φE
7 ssscongptld.6 φG
8 ssscongptld.7 φAB
9 ssscongptld.8 φBC
10 ssscongptld.9 φDE
11 ssscongptld.10 φEG
12 ssscongptld.11 φAB=DE
13 ssscongptld.12 φBC=EG
14 ssscongptld.13 φCA=GD
15 negpitopissre ππ
16 ax-resscn
17 15 16 sstri ππ
18 2 3 subcld φAB
19 2 3 8 subne0d φAB0
20 4 3 subcld φCB
21 9 necomd φCB
22 4 3 21 subne0d φCB0
23 1 18 19 20 22 angcld φABFCBππ
24 17 23 sselid φABFCB
25 24 coscld φcosABFCB
26 5 6 subcld φDE
27 5 6 10 subne0d φDE0
28 7 6 subcld φGE
29 11 necomd φGE
30 7 6 29 subne0d φGE0
31 1 26 27 28 30 angcld φDEFGEππ
32 17 31 sselid φDEFGE
33 32 coscld φcosDEFGE
34 26 abscld φDE
35 34 recnd φDE
36 28 abscld φGE
37 36 recnd φGE
38 35 37 mulcld φDEGE
39 26 27 absne0d φDE0
40 28 30 absne0d φGE0
41 35 37 39 40 mulne0d φDEGE0
42 4 3 abssubd φCB=BC
43 7 6 abssubd φGE=EG
44 13 42 43 3eqtr4d φCB=GE
45 12 44 oveq12d φABCB=DEGE
46 45 oveq1d φABCBcosABFCB=DEGEcosABFCB
47 12 35 eqeltrd φAB
48 44 37 eqeltrd φCB
49 47 48 mulcld φABCB
50 49 25 mulcld φABCBcosABFCB
51 38 33 mulcld φDEGEcosDEFGE
52 2cnd φ2
53 2ne0 20
54 53 a1i φ20
55 35 sqcld φDE2
56 37 sqcld φGE2
57 55 56 addcld φDE2+GE2
58 52 50 mulcld φ2ABCBcosABFCB
59 52 51 mulcld φ2DEGEcosDEFGE
60 12 oveq1d φAB2=DE2
61 44 oveq1d φCB2=GE2
62 60 61 oveq12d φAB2+CB2=DE2+GE2
63 62 oveq1d φAB2+CB2-2ABCBcosABFCB=DE2+GE2-2ABCBcosABFCB
64 14 oveq1d φCA2=GD2
65 eqid AB=AB
66 eqid CB=CB
67 eqid CA=CA
68 eqid ABFCB=ABFCB
69 1 65 66 67 68 lawcos CABCBABCA2=AB2+CB2-2ABCBcosABFCB
70 4 2 3 21 8 69 syl32anc φCA2=AB2+CB2-2ABCBcosABFCB
71 eqid DE=DE
72 eqid GE=GE
73 eqid GD=GD
74 eqid DEFGE=DEFGE
75 1 71 72 73 74 lawcos GDEGEDEGD2=DE2+GE2-2DEGEcosDEFGE
76 7 5 6 29 10 75 syl32anc φGD2=DE2+GE2-2DEGEcosDEFGE
77 64 70 76 3eqtr3d φAB2+CB2-2ABCBcosABFCB=DE2+GE2-2DEGEcosDEFGE
78 63 77 eqtr3d φDE2+GE2-2ABCBcosABFCB=DE2+GE2-2DEGEcosDEFGE
79 57 58 59 78 subcand φ2ABCBcosABFCB=2DEGEcosDEFGE
80 50 51 52 54 79 mulcanad φABCBcosABFCB=DEGEcosDEFGE
81 46 80 eqtr3d φDEGEcosABFCB=DEGEcosDEFGE
82 25 33 38 41 81 mulcanad φcosABFCB=cosDEFGE