Metamath Proof Explorer


Theorem stgoldbwt

Description: If the strong ternary Goldbach conjecture is valid, then the weak ternary Goldbach conjecture holds, too. (Contributed by AV, 27-Jul-2020)

Ref Expression
Assertion stgoldbwt nOdd7<nnGoldbachOddnOdd5<nnGoldbachOddW

Proof

Step Hyp Ref Expression
1 pm3.35 7<n7<nnGoldbachOddnGoldbachOdd
2 gbogbow nGoldbachOddnGoldbachOddW
3 2 a1d nGoldbachOdd5<nnGoldbachOddW
4 1 3 syl 7<n7<nnGoldbachOdd5<nnGoldbachOddW
5 4 ex 7<n7<nnGoldbachOdd5<nnGoldbachOddW
6 5 a1d 7<nnOdd7<nnGoldbachOdd5<nnGoldbachOddW
7 oddz nOddn
8 7 zred nOddn
9 7re 7
10 9 a1i nOdd7
11 8 10 lenltd nOddn7¬7<n
12 8 10 leloed nOddn7n<7n=7
13 7 adantr nOdd5<nn
14 6nn 6
15 14 nnzi 6
16 13 15 jctir nOdd5<nn6
17 16 adantl n<7nOdd5<nn6
18 df-7 7=6+1
19 18 breq2i n<7n<6+1
20 19 biimpi n<7n<6+1
21 df-6 6=5+1
22 5nn 5
23 22 nnzi 5
24 zltp1le 5n5<n5+1n
25 23 7 24 sylancr nOdd5<n5+1n
26 25 biimpa nOdd5<n5+1n
27 21 26 eqbrtrid nOdd5<n6n
28 20 27 anim12ci n<7nOdd5<n6nn<6+1
29 zgeltp1eq n66nn<6+1n=6
30 17 28 29 sylc n<7nOdd5<nn=6
31 30 orcd n<7nOdd5<nn=6n=7
32 31 ex n<7nOdd5<nn=6n=7
33 olc n=7n=6n=7
34 33 a1d n=7nOdd5<nn=6n=7
35 32 34 jaoi n<7n=7nOdd5<nn=6n=7
36 35 expd n<7n=7nOdd5<nn=6n=7
37 36 com12 nOddn<7n=75<nn=6n=7
38 12 37 sylbid nOddn75<nn=6n=7
39 eleq1 n=6nOdd6Odd
40 6even 6Even
41 evennodd 6Even¬6Odd
42 41 pm2.21d 6Even6OddnGoldbachOddW
43 40 42 mp1i n=66OddnGoldbachOddW
44 39 43 sylbid n=6nOddnGoldbachOddW
45 7gbow 7GoldbachOddW
46 eleq1 n=7nGoldbachOddW7GoldbachOddW
47 45 46 mpbiri n=7nGoldbachOddW
48 47 a1d n=7nOddnGoldbachOddW
49 44 48 jaoi n=6n=7nOddnGoldbachOddW
50 49 com12 nOddn=6n=7nGoldbachOddW
51 38 50 syl6d nOddn75<nnGoldbachOddW
52 11 51 sylbird nOdd¬7<n5<nnGoldbachOddW
53 52 com12 ¬7<nnOdd5<nnGoldbachOddW
54 53 a1dd ¬7<nnOdd7<nnGoldbachOdd5<nnGoldbachOddW
55 6 54 pm2.61i nOdd7<nnGoldbachOdd5<nnGoldbachOddW
56 55 ralimia nOdd7<nnGoldbachOddnOdd5<nnGoldbachOddW