Metamath Proof Explorer


Theorem submatres

Description: Special case where the submatrix is a restriction of the initial matrix, and no renumbering occurs. (Contributed by Thierry Arnoux, 26-Aug-2020)

Ref Expression
Hypotheses submat1n.a A=1NMatR
submat1n.b B=BaseA
Assertion submatres NMBNsubMat1MN=M1N1×1N1

Proof

Step Hyp Ref Expression
1 submat1n.a A=1NMatR
2 submat1n.b B=BaseA
3 1 2 submat1n NMBNsubMat1MN=N1NsubMatRMN
4 simpr NMBMB
5 nnuz =1
6 5 eleq2i NN1
7 6 biimpi NN1
8 eluzfz2 N1N1N
9 7 8 syl NN1N
10 9 adantr NMBN1N
11 eqid 1NsubMatR=1NsubMatR
12 1 11 2 submaval MBN1NN1NN1NsubMatRMN=i1NN,j1NNiMj
13 4 10 10 12 syl3anc NMBN1NsubMatRMN=i1NN,j1NNiMj
14 fzdif2 N11NN=1N1
15 7 14 syl N1NN=1N1
16 difss 1NN1N
17 15 16 eqsstrrdi N1N11N
18 17 adantr NMB1N11N
19 resmpo 1N11N1N11Ni1N,j1NiMj1N1×1N1=i1N1,j1N1iMj
20 18 18 19 syl2anc NMBi1N,j1NiMj1N1×1N1=i1N1,j1N1iMj
21 1 2 matmpo MBM=i1N,j1NiMj
22 21 reseq1d MBM1N1×1N1=i1N,j1NiMj1N1×1N1
23 22 adantl NMBM1N1×1N1=i1N,j1NiMj1N1×1N1
24 15 adantr NMB1NN=1N1
25 eqidd NMBiMj=iMj
26 24 24 25 mpoeq123dv NMBi1NN,j1NNiMj=i1N1,j1N1iMj
27 20 23 26 3eqtr4rd NMBi1NN,j1NNiMj=M1N1×1N1
28 3 13 27 3eqtrd NMBNsubMat1MN=M1N1×1N1