Metamath Proof Explorer


Theorem submatres

Description: Special case where the submatrix is a restriction of the initial matrix, and no renumbering occurs. (Contributed by Thierry Arnoux, 26-Aug-2020)

Ref Expression
Hypotheses submat1n.a A = 1 N Mat R
submat1n.b B = Base A
Assertion submatres N M B N subMat 1 M N = M 1 N 1 × 1 N 1

Proof

Step Hyp Ref Expression
1 submat1n.a A = 1 N Mat R
2 submat1n.b B = Base A
3 1 2 submat1n N M B N subMat 1 M N = N 1 N subMat R M N
4 simpr N M B M B
5 nnuz = 1
6 5 eleq2i N N 1
7 6 biimpi N N 1
8 eluzfz2 N 1 N 1 N
9 7 8 syl N N 1 N
10 9 adantr N M B N 1 N
11 eqid 1 N subMat R = 1 N subMat R
12 1 11 2 submaval M B N 1 N N 1 N N 1 N subMat R M N = i 1 N N , j 1 N N i M j
13 4 10 10 12 syl3anc N M B N 1 N subMat R M N = i 1 N N , j 1 N N i M j
14 fzdif2 N 1 1 N N = 1 N 1
15 7 14 syl N 1 N N = 1 N 1
16 difss 1 N N 1 N
17 15 16 eqsstrrdi N 1 N 1 1 N
18 17 adantr N M B 1 N 1 1 N
19 resmpo 1 N 1 1 N 1 N 1 1 N i 1 N , j 1 N i M j 1 N 1 × 1 N 1 = i 1 N 1 , j 1 N 1 i M j
20 18 18 19 syl2anc N M B i 1 N , j 1 N i M j 1 N 1 × 1 N 1 = i 1 N 1 , j 1 N 1 i M j
21 1 2 matmpo M B M = i 1 N , j 1 N i M j
22 21 reseq1d M B M 1 N 1 × 1 N 1 = i 1 N , j 1 N i M j 1 N 1 × 1 N 1
23 22 adantl N M B M 1 N 1 × 1 N 1 = i 1 N , j 1 N i M j 1 N 1 × 1 N 1
24 15 adantr N M B 1 N N = 1 N 1
25 eqidd N M B i M j = i M j
26 24 24 25 mpoeq123dv N M B i 1 N N , j 1 N N i M j = i 1 N 1 , j 1 N 1 i M j
27 20 23 26 3eqtr4rd N M B i 1 N N , j 1 N N i M j = M 1 N 1 × 1 N 1
28 3 13 27 3eqtrd N M B N subMat 1 M N = M 1 N 1 × 1 N 1