| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrg1.1 |  | 
						
							| 2 |  | subrg1.2 |  | 
						
							| 3 |  | eqid |  | 
						
							| 4 | 3 | subrg1cl |  | 
						
							| 5 | 1 | subrgbas |  | 
						
							| 6 | 4 5 | eleqtrd |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 7 | subrgss |  | 
						
							| 9 | 5 8 | eqsstrrd |  | 
						
							| 10 | 9 | sselda |  | 
						
							| 11 |  | subrgrcl |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 7 12 3 | ringidmlem |  | 
						
							| 14 | 11 13 | sylan |  | 
						
							| 15 | 1 12 | ressmulr |  | 
						
							| 16 | 15 | oveqd |  | 
						
							| 17 | 16 | eqeq1d |  | 
						
							| 18 | 15 | oveqd |  | 
						
							| 19 | 18 | eqeq1d |  | 
						
							| 20 | 17 19 | anbi12d |  | 
						
							| 21 | 20 | biimpa |  | 
						
							| 22 | 14 21 | syldan |  | 
						
							| 23 | 10 22 | syldan |  | 
						
							| 24 | 23 | ralrimiva |  | 
						
							| 25 | 1 | subrgring |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 | 26 27 28 | isringid |  | 
						
							| 30 | 25 29 | syl |  | 
						
							| 31 | 6 24 30 | mpbi2and |  | 
						
							| 32 | 2 31 | eqtr4id |  |