Metamath Proof Explorer


Theorem subrg1

Description: A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypotheses subrg1.1 S=R𝑠A
subrg1.2 1˙=1R
Assertion subrg1 ASubRingR1˙=1S

Proof

Step Hyp Ref Expression
1 subrg1.1 S=R𝑠A
2 subrg1.2 1˙=1R
3 eqid 1R=1R
4 3 subrg1cl ASubRingR1RA
5 1 subrgbas ASubRingRA=BaseS
6 4 5 eleqtrd ASubRingR1RBaseS
7 eqid BaseR=BaseR
8 7 subrgss ASubRingRABaseR
9 5 8 eqsstrrd ASubRingRBaseSBaseR
10 9 sselda ASubRingRxBaseSxBaseR
11 subrgrcl ASubRingRRRing
12 eqid R=R
13 7 12 3 ringidmlem RRingxBaseR1RRx=xxR1R=x
14 11 13 sylan ASubRingRxBaseR1RRx=xxR1R=x
15 1 12 ressmulr ASubRingRR=S
16 15 oveqd ASubRingR1RRx=1RSx
17 16 eqeq1d ASubRingR1RRx=x1RSx=x
18 15 oveqd ASubRingRxR1R=xS1R
19 18 eqeq1d ASubRingRxR1R=xxS1R=x
20 17 19 anbi12d ASubRingR1RRx=xxR1R=x1RSx=xxS1R=x
21 20 biimpa ASubRingR1RRx=xxR1R=x1RSx=xxS1R=x
22 14 21 syldan ASubRingRxBaseR1RSx=xxS1R=x
23 10 22 syldan ASubRingRxBaseS1RSx=xxS1R=x
24 23 ralrimiva ASubRingRxBaseS1RSx=xxS1R=x
25 1 subrgring ASubRingRSRing
26 eqid BaseS=BaseS
27 eqid S=S
28 eqid 1S=1S
29 26 27 28 isringid SRing1RBaseSxBaseS1RSx=xxS1R=x1S=1R
30 25 29 syl ASubRingR1RBaseSxBaseS1RSx=xxS1R=x1S=1R
31 6 24 30 mpbi2and ASubRingR1S=1R
32 2 31 eqtr4id ASubRingR1˙=1S