Description: A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subrg1.1 | |
|
subrg1.2 | |
||
Assertion | subrg1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrg1.1 | |
|
2 | subrg1.2 | |
|
3 | eqid | |
|
4 | 3 | subrg1cl | |
5 | 1 | subrgbas | |
6 | 4 5 | eleqtrd | |
7 | eqid | |
|
8 | 7 | subrgss | |
9 | 5 8 | eqsstrrd | |
10 | 9 | sselda | |
11 | subrgrcl | |
|
12 | eqid | |
|
13 | 7 12 3 | ringidmlem | |
14 | 11 13 | sylan | |
15 | 1 12 | ressmulr | |
16 | 15 | oveqd | |
17 | 16 | eqeq1d | |
18 | 15 | oveqd | |
19 | 18 | eqeq1d | |
20 | 17 19 | anbi12d | |
21 | 20 | biimpa | |
22 | 14 21 | syldan | |
23 | 10 22 | syldan | |
24 | 23 | ralrimiva | |
25 | 1 | subrgring | |
26 | eqid | |
|
27 | eqid | |
|
28 | eqid | |
|
29 | 26 27 28 | isringid | |
30 | 25 29 | syl | |
31 | 6 24 30 | mpbi2and | |
32 | 2 31 | eqtr4id | |