| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgugrp.1 |  | 
						
							| 2 |  | subrgugrp.2 |  | 
						
							| 3 |  | subrgugrp.3 |  | 
						
							| 4 |  | subrgunit.4 |  | 
						
							| 5 | 1 2 3 | subrguss |  | 
						
							| 6 | 5 | sselda |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 7 3 | unitcl |  | 
						
							| 9 | 8 | adantl |  | 
						
							| 10 | 1 | subrgbas |  | 
						
							| 11 | 10 | adantr |  | 
						
							| 12 | 9 11 | eleqtrrd |  | 
						
							| 13 | 1 | subrgring |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 3 14 7 | ringinvcl |  | 
						
							| 16 | 13 15 | sylan |  | 
						
							| 17 | 1 4 3 14 | subrginv |  | 
						
							| 18 | 16 17 11 | 3eltr4d |  | 
						
							| 19 | 6 12 18 | 3jca |  | 
						
							| 20 |  | simpr2 |  | 
						
							| 21 | 10 | adantr |  | 
						
							| 22 | 20 21 | eleqtrd |  | 
						
							| 23 |  | simpr3 |  | 
						
							| 24 | 23 21 | eleqtrd |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 | 7 25 26 | dvdsrmul |  | 
						
							| 28 | 22 24 27 | syl2anc |  | 
						
							| 29 |  | subrgrcl |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 |  | simpr1 |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 | 2 4 32 33 | unitlinv |  | 
						
							| 35 | 30 31 34 | syl2anc |  | 
						
							| 36 | 1 32 | ressmulr |  | 
						
							| 37 | 36 | adantr |  | 
						
							| 38 | 37 | oveqd |  | 
						
							| 39 | 1 33 | subrg1 |  | 
						
							| 40 | 39 | adantr |  | 
						
							| 41 | 35 38 40 | 3eqtr3d |  | 
						
							| 42 | 28 41 | breqtrd |  | 
						
							| 43 |  | eqid |  | 
						
							| 44 | 43 7 | opprbas |  | 
						
							| 45 |  | eqid |  | 
						
							| 46 |  | eqid |  | 
						
							| 47 | 44 45 46 | dvdsrmul |  | 
						
							| 48 | 22 24 47 | syl2anc |  | 
						
							| 49 | 7 26 43 46 | opprmul |  | 
						
							| 50 | 2 4 32 33 | unitrinv |  | 
						
							| 51 | 30 31 50 | syl2anc |  | 
						
							| 52 | 37 | oveqd |  | 
						
							| 53 | 51 52 40 | 3eqtr3d |  | 
						
							| 54 | 49 53 | eqtrid |  | 
						
							| 55 | 48 54 | breqtrd |  | 
						
							| 56 |  | eqid |  | 
						
							| 57 | 3 56 25 43 45 | isunit |  | 
						
							| 58 | 42 55 57 | sylanbrc |  | 
						
							| 59 | 19 58 | impbida |  |