Metamath Proof Explorer


Theorem subrgunit

Description: An element of a ring is a unit of a subring iff it is a unit of the parent ring and both it and its inverse are in the subring. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses subrgugrp.1 S = R 𝑠 A
subrgugrp.2 U = Unit R
subrgugrp.3 V = Unit S
subrgunit.4 I = inv r R
Assertion subrgunit A SubRing R X V X U X A I X A

Proof

Step Hyp Ref Expression
1 subrgugrp.1 S = R 𝑠 A
2 subrgugrp.2 U = Unit R
3 subrgugrp.3 V = Unit S
4 subrgunit.4 I = inv r R
5 1 2 3 subrguss A SubRing R V U
6 5 sselda A SubRing R X V X U
7 eqid Base S = Base S
8 7 3 unitcl X V X Base S
9 8 adantl A SubRing R X V X Base S
10 1 subrgbas A SubRing R A = Base S
11 10 adantr A SubRing R X V A = Base S
12 9 11 eleqtrrd A SubRing R X V X A
13 1 subrgring A SubRing R S Ring
14 eqid inv r S = inv r S
15 3 14 7 ringinvcl S Ring X V inv r S X Base S
16 13 15 sylan A SubRing R X V inv r S X Base S
17 1 4 3 14 subrginv A SubRing R X V I X = inv r S X
18 16 17 11 3eltr4d A SubRing R X V I X A
19 6 12 18 3jca A SubRing R X V X U X A I X A
20 simpr2 A SubRing R X U X A I X A X A
21 10 adantr A SubRing R X U X A I X A A = Base S
22 20 21 eleqtrd A SubRing R X U X A I X A X Base S
23 simpr3 A SubRing R X U X A I X A I X A
24 23 21 eleqtrd A SubRing R X U X A I X A I X Base S
25 eqid r S = r S
26 eqid S = S
27 7 25 26 dvdsrmul X Base S I X Base S X r S I X S X
28 22 24 27 syl2anc A SubRing R X U X A I X A X r S I X S X
29 subrgrcl A SubRing R R Ring
30 29 adantr A SubRing R X U X A I X A R Ring
31 simpr1 A SubRing R X U X A I X A X U
32 eqid R = R
33 eqid 1 R = 1 R
34 2 4 32 33 unitlinv R Ring X U I X R X = 1 R
35 30 31 34 syl2anc A SubRing R X U X A I X A I X R X = 1 R
36 1 32 ressmulr A SubRing R R = S
37 36 adantr A SubRing R X U X A I X A R = S
38 37 oveqd A SubRing R X U X A I X A I X R X = I X S X
39 1 33 subrg1 A SubRing R 1 R = 1 S
40 39 adantr A SubRing R X U X A I X A 1 R = 1 S
41 35 38 40 3eqtr3d A SubRing R X U X A I X A I X S X = 1 S
42 28 41 breqtrd A SubRing R X U X A I X A X r S 1 S
43 eqid opp r S = opp r S
44 43 7 opprbas Base S = Base opp r S
45 eqid r opp r S = r opp r S
46 eqid opp r S = opp r S
47 44 45 46 dvdsrmul X Base S I X Base S X r opp r S I X opp r S X
48 22 24 47 syl2anc A SubRing R X U X A I X A X r opp r S I X opp r S X
49 7 26 43 46 opprmul I X opp r S X = X S I X
50 2 4 32 33 unitrinv R Ring X U X R I X = 1 R
51 30 31 50 syl2anc A SubRing R X U X A I X A X R I X = 1 R
52 37 oveqd A SubRing R X U X A I X A X R I X = X S I X
53 51 52 40 3eqtr3d A SubRing R X U X A I X A X S I X = 1 S
54 49 53 syl5eq A SubRing R X U X A I X A I X opp r S X = 1 S
55 48 54 breqtrd A SubRing R X U X A I X A X r opp r S 1 S
56 eqid 1 S = 1 S
57 3 56 25 43 45 isunit X V X r S 1 S X r opp r S 1 S
58 42 55 57 sylanbrc A SubRing R X U X A I X A X V
59 19 58 impbida A SubRing R X V X U X A I X A