Metamath Proof Explorer


Theorem summolem2

Description: Lemma for summo . (Contributed by Mario Carneiro, 3-Apr-2014)

Ref Expression
Hypotheses summo.1 F=kifkAB0
summo.2 φkAB
summo.3 G=nfn/kB
Assertion summolem2 φmAmseqm+Fxmff:1m1-1 ontoAy=seq1+Gmx=y

Proof

Step Hyp Ref Expression
1 summo.1 F=kifkAB0
2 summo.2 φkAB
3 summo.3 G=nfn/kB
4 fveq2 m=jm=j
5 4 sseq2d m=jAmAj
6 seqeq1 m=jseqm+F=seqj+F
7 6 breq1d m=jseqm+Fxseqj+Fx
8 5 7 anbi12d m=jAmseqm+FxAjseqj+Fx
9 8 cbvrexvw mAmseqm+FxjAjseqj+Fx
10 simplrr φjAjseqj+Fxmf:1m1-1 ontoAseqj+Fx
11 simplrl φjAjseqj+Fxmf:1m1-1 ontoAAj
12 uzssz j
13 zssre
14 12 13 sstri j
15 11 14 sstrdi φjAjseqj+Fxmf:1m1-1 ontoAA
16 ltso <Or
17 soss A<Or<OrA
18 15 16 17 mpisyl φjAjseqj+Fxmf:1m1-1 ontoA<OrA
19 fzfi 1mFin
20 ovex 1mV
21 20 f1oen f:1m1-1 ontoA1mA
22 21 ad2antll φjAjseqj+Fxmf:1m1-1 ontoA1mA
23 22 ensymd φjAjseqj+Fxmf:1m1-1 ontoAA1m
24 enfii 1mFinA1mAFin
25 19 23 24 sylancr φjAjseqj+Fxmf:1m1-1 ontoAAFin
26 fz1iso <OrAAFinggIsom<,<1AA
27 18 25 26 syl2anc φjAjseqj+Fxmf:1m1-1 ontoAggIsom<,<1AA
28 2 ad5ant15 φjAjseqj+Fxmf:1m1-1 ontoAgIsom<,<1AAkAB
29 eqid ngn/kB=ngn/kB
30 simprll φjAjseqj+Fxmf:1m1-1 ontoAgIsom<,<1AAm
31 simpllr φjAjseqj+Fxmf:1m1-1 ontoAgIsom<,<1AAj
32 simplrl φjAjseqj+Fxmf:1m1-1 ontoAgIsom<,<1AAAj
33 simprlr φjAjseqj+Fxmf:1m1-1 ontoAgIsom<,<1AAf:1m1-1 ontoA
34 simprr φjAjseqj+Fxmf:1m1-1 ontoAgIsom<,<1AAgIsom<,<1AA
35 1 28 3 29 30 31 32 33 34 summolem2a φjAjseqj+Fxmf:1m1-1 ontoAgIsom<,<1AAseqj+Fseq1+Gm
36 35 expr φjAjseqj+Fxmf:1m1-1 ontoAgIsom<,<1AAseqj+Fseq1+Gm
37 36 exlimdv φjAjseqj+Fxmf:1m1-1 ontoAggIsom<,<1AAseqj+Fseq1+Gm
38 27 37 mpd φjAjseqj+Fxmf:1m1-1 ontoAseqj+Fseq1+Gm
39 climuni seqj+Fxseqj+Fseq1+Gmx=seq1+Gm
40 10 38 39 syl2anc φjAjseqj+Fxmf:1m1-1 ontoAx=seq1+Gm
41 40 anassrs φjAjseqj+Fxmf:1m1-1 ontoAx=seq1+Gm
42 eqeq2 y=seq1+Gmx=yx=seq1+Gm
43 41 42 syl5ibrcom φjAjseqj+Fxmf:1m1-1 ontoAy=seq1+Gmx=y
44 43 expimpd φjAjseqj+Fxmf:1m1-1 ontoAy=seq1+Gmx=y
45 44 exlimdv φjAjseqj+Fxmff:1m1-1 ontoAy=seq1+Gmx=y
46 45 rexlimdva φjAjseqj+Fxmff:1m1-1 ontoAy=seq1+Gmx=y
47 46 r19.29an φjAjseqj+Fxmff:1m1-1 ontoAy=seq1+Gmx=y
48 9 47 sylan2b φmAmseqm+Fxmff:1m1-1 ontoAy=seq1+Gmx=y