Description: Bidirectional form of suplub . (Contributed by Mario Carneiro, 6-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | supmo.1 | |
|
supcl.2 | |
||
suplub2.3 | |
||
Assertion | suplub2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmo.1 | |
|
2 | supcl.2 | |
|
3 | suplub2.3 | |
|
4 | 1 2 | suplub | |
5 | 4 | expdimp | |
6 | breq2 | |
|
7 | 6 | cbvrexvw | |
8 | breq2 | |
|
9 | 8 | biimprd | |
10 | 9 | a1i | |
11 | 1 | ad2antrr | |
12 | simplr | |
|
13 | 3 | adantr | |
14 | 13 | sselda | |
15 | 1 2 | supcl | |
16 | 15 | ad2antrr | |
17 | sotr | |
|
18 | 11 12 14 16 17 | syl13anc | |
19 | 18 | expcomd | |
20 | 1 2 | supub | |
21 | 20 | adantr | |
22 | 21 | imp | |
23 | sotric | |
|
24 | 11 16 14 23 | syl12anc | |
25 | 24 | con2bid | |
26 | 22 25 | mpbird | |
27 | 10 19 26 | mpjaod | |
28 | 27 | rexlimdva | |
29 | 7 28 | biimtrid | |
30 | 5 29 | impbid | |