Metamath Proof Explorer


Theorem suplub2

Description: Bidirectional form of suplub . (Contributed by Mario Carneiro, 6-Sep-2014)

Ref Expression
Hypotheses supmo.1 φROrA
supcl.2 φxAyB¬xRyyAyRxzByRz
suplub2.3 φBA
Assertion suplub2 φCACRsupBARzBCRz

Proof

Step Hyp Ref Expression
1 supmo.1 φROrA
2 supcl.2 φxAyB¬xRyyAyRxzByRz
3 suplub2.3 φBA
4 1 2 suplub φCACRsupBARzBCRz
5 4 expdimp φCACRsupBARzBCRz
6 breq2 z=wCRzCRw
7 6 cbvrexvw zBCRzwBCRw
8 breq2 supBAR=wCRsupBARCRw
9 8 biimprd supBAR=wCRwCRsupBAR
10 9 a1i φCAwBsupBAR=wCRwCRsupBAR
11 1 ad2antrr φCAwBROrA
12 simplr φCAwBCA
13 3 adantr φCABA
14 13 sselda φCAwBwA
15 1 2 supcl φsupBARA
16 15 ad2antrr φCAwBsupBARA
17 sotr ROrACAwAsupBARACRwwRsupBARCRsupBAR
18 11 12 14 16 17 syl13anc φCAwBCRwwRsupBARCRsupBAR
19 18 expcomd φCAwBwRsupBARCRwCRsupBAR
20 1 2 supub φwB¬supBARRw
21 20 adantr φCAwB¬supBARRw
22 21 imp φCAwB¬supBARRw
23 sotric ROrAsupBARAwAsupBARRw¬supBAR=wwRsupBAR
24 11 16 14 23 syl12anc φCAwBsupBARRw¬supBAR=wwRsupBAR
25 24 con2bid φCAwBsupBAR=wwRsupBAR¬supBARRw
26 22 25 mpbird φCAwBsupBAR=wwRsupBAR
27 10 19 26 mpjaod φCAwBCRwCRsupBAR
28 27 rexlimdva φCAwBCRwCRsupBAR
29 7 28 biimtrid φCAzBCRzCRsupBAR
30 5 29 impbid φCACRsupBARzBCRz