Metamath Proof Explorer


Theorem suppss3

Description: Deduce a function's support's inclusion in another function's support. (Contributed by Thierry Arnoux, 7-Sep-2017) (Revised by Thierry Arnoux, 1-Sep-2019)

Ref Expression
Hypotheses suppss3.1 G = x A B
suppss3.a φ A V
suppss3.z φ Z W
suppss3.2 φ F Fn A
suppss3.3 φ x A F x = Z B = Z
Assertion suppss3 φ G supp Z F supp Z

Proof

Step Hyp Ref Expression
1 suppss3.1 G = x A B
2 suppss3.a φ A V
3 suppss3.z φ Z W
4 suppss3.2 φ F Fn A
5 suppss3.3 φ x A F x = Z B = Z
6 1 oveq1i G supp Z = x A B supp Z
7 simpl φ x A supp Z F φ
8 eldifi x A supp Z F x A
9 8 adantl φ x A supp Z F x A
10 fnex F Fn A A V F V
11 4 2 10 syl2anc φ F V
12 suppimacnv F V Z W F supp Z = F -1 V Z
13 11 3 12 syl2anc φ F supp Z = F -1 V Z
14 13 eleq2d φ x supp Z F x F -1 V Z
15 elpreima F Fn A x F -1 V Z x A F x V Z
16 4 15 syl φ x F -1 V Z x A F x V Z
17 14 16 bitrd φ x supp Z F x A F x V Z
18 17 baibd φ x A x supp Z F F x V Z
19 18 notbid φ x A ¬ x supp Z F ¬ F x V Z
20 19 biimpd φ x A ¬ x supp Z F ¬ F x V Z
21 20 expimpd φ x A ¬ x supp Z F ¬ F x V Z
22 eldif x A supp Z F x A ¬ x supp Z F
23 fvex F x V
24 eldifsn F x V Z F x V F x Z
25 23 24 mpbiran F x V Z F x Z
26 25 necon2bbii F x = Z ¬ F x V Z
27 21 22 26 3imtr4g φ x A supp Z F F x = Z
28 27 imp φ x A supp Z F F x = Z
29 7 9 28 5 syl3anc φ x A supp Z F B = Z
30 29 2 suppss2 φ x A B supp Z F supp Z
31 6 30 eqsstrid φ G supp Z F supp Z