Metamath Proof Explorer


Theorem suprnmpt

Description: An explicit bound for the range of a bounded function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses suprnmpt.a φ A
suprnmpt.b φ x A B
suprnmpt.bnd φ y x A B y
suprnmpt.f F = x A B
suprnmpt.c C = sup ran F <
Assertion suprnmpt φ C x A B C

Proof

Step Hyp Ref Expression
1 suprnmpt.a φ A
2 suprnmpt.b φ x A B
3 suprnmpt.bnd φ y x A B y
4 suprnmpt.f F = x A B
5 suprnmpt.c C = sup ran F <
6 2 ralrimiva φ x A B
7 4 rnmptss x A B ran F
8 6 7 syl φ ran F
9 nfv x φ
10 nfmpt1 _ x x A B
11 4 10 nfcxfr _ x F
12 11 nfrn _ x ran F
13 nfcv _ x
14 12 13 nfne x ran F
15 n0 A x x A
16 1 15 sylib φ x x A
17 simpr φ x A x A
18 4 elrnmpt1 x A B B ran F
19 17 2 18 syl2anc φ x A B ran F
20 19 ne0d φ x A ran F
21 9 14 16 20 exlimdd φ ran F
22 nfv y φ
23 nfre1 y y z ran F z y
24 simp2 φ y x A B y y
25 simpl1 φ y x A B y z ran F φ
26 simpl3 φ y x A B y z ran F x A B y
27 vex z V
28 4 elrnmpt z V z ran F x A z = B
29 27 28 ax-mp z ran F x A z = B
30 29 biimpi z ran F x A z = B
31 30 adantl φ y x A B y z ran F x A z = B
32 simp3 φ x A B y x A z = B x A z = B
33 nfra1 x x A B y
34 nfre1 x x A z = B
35 9 33 34 nf3an x φ x A B y x A z = B
36 nfv x z y
37 simp3 x A B y x A z = B z = B
38 rspa x A B y x A B y
39 38 3adant3 x A B y x A z = B B y
40 37 39 eqbrtrd x A B y x A z = B z y
41 40 3exp x A B y x A z = B z y
42 41 3ad2ant2 φ x A B y x A z = B x A z = B z y
43 35 36 42 rexlimd φ x A B y x A z = B x A z = B z y
44 32 43 mpd φ x A B y x A z = B z y
45 25 26 31 44 syl3anc φ y x A B y z ran F z y
46 45 ralrimiva φ y x A B y z ran F z y
47 19.8a y z ran F z y y y z ran F z y
48 24 46 47 syl2anc φ y x A B y y y z ran F z y
49 df-rex y z ran F z y y y z ran F z y
50 48 49 sylibr φ y x A B y y z ran F z y
51 50 3exp φ y x A B y y z ran F z y
52 22 23 51 rexlimd φ y x A B y y z ran F z y
53 3 52 mpd φ y z ran F z y
54 suprcl ran F ran F y z ran F z y sup ran F <
55 8 21 53 54 syl3anc φ sup ran F <
56 5 55 eqeltrid φ C
57 8 adantr φ x A ran F
58 53 adantr φ x A y z ran F z y
59 suprub ran F ran F y z ran F z y B ran F B sup ran F <
60 57 20 58 19 59 syl31anc φ x A B sup ran F <
61 60 5 breqtrrdi φ x A B C
62 61 ralrimiva φ x A B C
63 56 62 jca φ C x A B C