Description: The supremum of a nonempty bounded indexed set of extended reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | supxrleubrnmpt.x | |
|
supxrleubrnmpt.b | |
||
supxrleubrnmpt.c | |
||
Assertion | supxrleubrnmpt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supxrleubrnmpt.x | |
|
2 | supxrleubrnmpt.b | |
|
3 | supxrleubrnmpt.c | |
|
4 | eqid | |
|
5 | 1 4 2 | rnmptssd | |
6 | supxrleub | |
|
7 | 5 3 6 | syl2anc | |
8 | nfmpt1 | |
|
9 | 8 | nfrn | |
10 | nfv | |
|
11 | 9 10 | nfralw | |
12 | 1 11 | nfan | |
13 | simpr | |
|
14 | 4 | elrnmpt1 | |
15 | 13 2 14 | syl2anc | |
16 | 15 | adantlr | |
17 | simplr | |
|
18 | breq1 | |
|
19 | 18 | rspcva | |
20 | 16 17 19 | syl2anc | |
21 | 20 | ex | |
22 | 12 21 | ralrimi | |
23 | 22 | ex | |
24 | vex | |
|
25 | 4 | elrnmpt | |
26 | 24 25 | ax-mp | |
27 | 26 | biimpi | |
28 | 27 | adantl | |
29 | nfra1 | |
|
30 | rspa | |
|
31 | 18 | biimprcd | |
32 | 30 31 | syl | |
33 | 32 | ex | |
34 | 29 10 33 | rexlimd | |
35 | 34 | adantr | |
36 | 28 35 | mpd | |
37 | 36 | ralrimiva | |
38 | 37 | a1i | |
39 | 23 38 | impbid | |
40 | 7 39 | bitrd | |