Metamath Proof Explorer


Theorem symg2bas

Description: The symmetric group on a pair is the symmetric group S_2 consisting of the identity and the transposition. Notice that this statement is valid for proper pairs only. In the case that both elements are identical, i.e., the pairs are actually singletons, this theorem would be about S_1, see Theorem symg1bas . (Contributed by AV, 9-Dec-2018) (Proof shortened by AV, 16-Jun-2022)

Ref Expression
Hypotheses symg1bas.1 G=SymGrpA
symg1bas.2 B=BaseG
symg2bas.0 A=IJ
Assertion symg2bas IVJWB=IIJJIJJI

Proof

Step Hyp Ref Expression
1 symg1bas.1 G=SymGrpA
2 symg1bas.2 B=BaseG
3 symg2bas.0 A=IJ
4 eqid SymGrpJ=SymGrpJ
5 eqid BaseSymGrpJ=BaseSymGrpJ
6 eqid J=J
7 4 5 6 symg1bas JWBaseSymGrpJ=JJ
8 7 ad2antll I=JIVJWBaseSymGrpJ=JJ
9 df-pr IJ=IJ
10 sneq I=JI=J
11 10 uneq1d I=JIJ=JJ
12 11 adantr I=JIVJWIJ=JJ
13 unidm JJ=J
14 12 13 eqtrdi I=JIVJWIJ=J
15 9 14 eqtrid I=JIVJWIJ=J
16 3 15 eqtrid I=JIVJWA=J
17 16 fveq2d I=JIVJWSymGrpA=SymGrpJ
18 1 17 eqtrid I=JIVJWG=SymGrpJ
19 18 fveq2d I=JIVJWBaseG=BaseSymGrpJ
20 2 19 eqtrid I=JIVJWB=BaseSymGrpJ
21 id I=JI=J
22 21 21 opeq12d I=JII=JJ
23 22 adantr I=JIVJWII=JJ
24 23 preq1d I=JIVJWIIJJ=JJJJ
25 eqid JJ=JJ
26 opex JJV
27 26 26 preqsn JJJJ=JJJJ=JJJJ=JJ
28 25 25 27 mpbir2an JJJJ=JJ
29 24 28 eqtrdi I=JIVJWIIJJ=JJ
30 opeq1 I=JIJ=JJ
31 opeq2 I=JJI=JJ
32 30 31 preq12d I=JIJJI=JJJJ
33 32 28 eqtrdi I=JIJJI=JJ
34 33 adantr I=JIVJWIJJI=JJ
35 29 34 preq12d I=JIVJWIIJJIJJI=JJJJ
36 eqid JJ=JJ
37 snex JJV
38 37 37 preqsn JJJJ=JJJJ=JJJJ=JJ
39 36 36 38 mpbir2an JJJJ=JJ
40 35 39 eqtrdi I=JIVJWIIJJIJJI=JJ
41 8 20 40 3eqtr4d I=JIVJWB=IIJJIJJI
42 2 fvexi BV
43 42 a1i ¬I=JIVJWBV
44 neqne ¬I=JIJ
45 44 anim2i IVJW¬I=JIVJWIJ
46 df-3an IVJWIJIVJWIJ
47 45 46 sylibr IVJW¬I=JIVJWIJ
48 47 ancoms ¬I=JIVJWIVJWIJ
49 1 2 3 symg2hash IVJWIJB=2
50 48 49 syl ¬I=JIVJWB=2
51 id IVIV
52 51 ancri IVIVIV
53 id JWJW
54 53 ancri JWJWJW
55 52 54 anim12i IVJWIVIVJWJW
56 df-ne IJ¬I=J
57 id IJIJ
58 57 ancri IJIJIJ
59 56 58 sylbir ¬I=JIJIJ
60 f1oprg IVIVJWJWIJIJIIJJ:IJ1-1 ontoIJ
61 60 imp IVIVJWJWIJIJIIJJ:IJ1-1 ontoIJ
62 55 59 61 syl2anr ¬I=JIVJWIIJJ:IJ1-1 ontoIJ
63 eqidd A=IJIIJJ=IIJJ
64 id A=IJA=IJ
65 63 64 64 f1oeq123d A=IJIIJJ:A1-1 ontoAIIJJ:IJ1-1 ontoIJ
66 3 65 ax-mp IIJJ:A1-1 ontoAIIJJ:IJ1-1 ontoIJ
67 62 66 sylibr ¬I=JIVJWIIJJ:A1-1 ontoA
68 prex IIJJV
69 1 2 elsymgbas2 IIJJVIIJJBIIJJ:A1-1 ontoA
70 68 69 ax-mp IIJJBIIJJ:A1-1 ontoA
71 67 70 sylibr ¬I=JIVJWIIJJB
72 f1oprswap IVJWIJJI:IJ1-1 ontoIJ
73 eqidd A=IJIJJI=IJJI
74 73 64 64 f1oeq123d A=IJIJJI:A1-1 ontoAIJJI:IJ1-1 ontoIJ
75 3 74 ax-mp IJJI:A1-1 ontoAIJJI:IJ1-1 ontoIJ
76 72 75 sylibr IVJWIJJI:A1-1 ontoA
77 76 adantl ¬I=JIVJWIJJI:A1-1 ontoA
78 prex IJJIV
79 1 2 elsymgbas2 IJJIVIJJIBIJJI:A1-1 ontoA
80 78 79 ax-mp IJJIBIJJI:A1-1 ontoA
81 77 80 sylibr ¬I=JIVJWIJJIB
82 opex IIV
83 82 26 pm3.2i IIVJJV
84 opex IJV
85 opex JIV
86 84 85 pm3.2i IJVJIV
87 83 86 pm3.2i IIVJJVIJVJIV
88 opthg2 IVJWII=IJI=II=J
89 eqtr I=II=JI=J
90 88 89 syl6bi IVJWII=IJI=J
91 90 necon3d IVJWIJIIIJ
92 91 com12 IJIVJWIIIJ
93 56 92 sylbir ¬I=JIVJWIIIJ
94 93 imp ¬I=JIVJWIIIJ
95 52 adantr IVJWIVIV
96 opthg IVIVII=JII=JI=I
97 95 96 syl IVJWII=JII=JI=I
98 simpl I=JI=II=J
99 97 98 syl6bi IVJWII=JII=J
100 99 necon3d IVJWIJIIJI
101 100 com12 IJIVJWIIJI
102 56 101 sylbir ¬I=JIVJWIIJI
103 102 imp ¬I=JIVJWIIJI
104 94 103 jca ¬I=JIVJWIIIJIIJI
105 104 orcd ¬I=JIVJWIIIJIIJIJJIJJJJI
106 prneimg IIVJJVIJVJIVIIIJIIJIJJIJJJJIIIJJIJJI
107 87 105 106 mpsyl ¬I=JIVJWIIJJIJJI
108 hash2prd BVB=2IIJJBIJJIBIIJJIJJIB=IIJJIJJI
109 108 imp BVB=2IIJJBIJJIBIIJJIJJIB=IIJJIJJI
110 43 50 71 81 107 109 syl23anc ¬I=JIVJWB=IIJJIJJI
111 41 110 pm2.61ian IVJWB=IIJJIJJI