Metamath Proof Explorer


Theorem symgfix2

Description: If a permutation does not move a certain element of a set to a second element, there is a third element which is moved to the second element. (Contributed by AV, 2-Jan-2019)

Ref Expression
Hypothesis symgfix2.p P = Base SymGrp N
Assertion symgfix2 L N Q P q P | q K = L k N K Q k = L

Proof

Step Hyp Ref Expression
1 symgfix2.p P = Base SymGrp N
2 eldif Q P q P | q K = L Q P ¬ Q q P | q K = L
3 ianor ¬ Q P Q K = L ¬ Q P ¬ Q K = L
4 fveq1 q = Q q K = Q K
5 4 eqeq1d q = Q q K = L Q K = L
6 5 elrab Q q P | q K = L Q P Q K = L
7 3 6 xchnxbir ¬ Q q P | q K = L ¬ Q P ¬ Q K = L
8 7 anbi2i Q P ¬ Q q P | q K = L Q P ¬ Q P ¬ Q K = L
9 2 8 bitri Q P q P | q K = L Q P ¬ Q P ¬ Q K = L
10 pm2.21 ¬ Q P Q P L N k N K Q k = L
11 1 symgmov2 Q P l N k N Q k = l
12 eqeq2 l = L Q k = l Q k = L
13 12 rexbidv l = L k N Q k = l k N Q k = L
14 13 rspcva L N l N k N Q k = l k N Q k = L
15 eqeq2 L = Q k Q K = L Q K = Q k
16 15 eqcoms Q k = L Q K = L Q K = Q k
17 16 notbid Q k = L ¬ Q K = L ¬ Q K = Q k
18 fveq2 K = k Q K = Q k
19 18 eqcoms k = K Q K = Q k
20 19 necon3bi ¬ Q K = Q k k K
21 17 20 syl6bi Q k = L ¬ Q K = L k K
22 21 com12 ¬ Q K = L Q k = L k K
23 22 pm4.71rd ¬ Q K = L Q k = L k K Q k = L
24 23 rexbidv ¬ Q K = L k N Q k = L k N k K Q k = L
25 rexdifsn k N K Q k = L k N k K Q k = L
26 24 25 bitr4di ¬ Q K = L k N Q k = L k N K Q k = L
27 14 26 syl5ibcom L N l N k N Q k = l ¬ Q K = L k N K Q k = L
28 27 ex L N l N k N Q k = l ¬ Q K = L k N K Q k = L
29 28 com13 ¬ Q K = L l N k N Q k = l L N k N K Q k = L
30 11 29 syl5 ¬ Q K = L Q P L N k N K Q k = L
31 10 30 jaoi ¬ Q P ¬ Q K = L Q P L N k N K Q k = L
32 31 com13 L N Q P ¬ Q P ¬ Q K = L k N K Q k = L
33 32 impd L N Q P ¬ Q P ¬ Q K = L k N K Q k = L
34 9 33 syl5bi L N Q P q P | q K = L k N K Q k = L