Metamath Proof Explorer


Theorem symgfix2

Description: If a permutation does not move a certain element of a set to a second element, there is a third element which is moved to the second element. (Contributed by AV, 2-Jan-2019)

Ref Expression
Hypothesis symgfix2.p P=BaseSymGrpN
Assertion symgfix2 LNQPqP|qK=LkNKQk=L

Proof

Step Hyp Ref Expression
1 symgfix2.p P=BaseSymGrpN
2 eldif QPqP|qK=LQP¬QqP|qK=L
3 ianor ¬QPQK=L¬QP¬QK=L
4 fveq1 q=QqK=QK
5 4 eqeq1d q=QqK=LQK=L
6 5 elrab QqP|qK=LQPQK=L
7 3 6 xchnxbir ¬QqP|qK=L¬QP¬QK=L
8 7 anbi2i QP¬QqP|qK=LQP¬QP¬QK=L
9 2 8 bitri QPqP|qK=LQP¬QP¬QK=L
10 pm2.21 ¬QPQPLNkNKQk=L
11 1 symgmov2 QPlNkNQk=l
12 eqeq2 l=LQk=lQk=L
13 12 rexbidv l=LkNQk=lkNQk=L
14 13 rspcva LNlNkNQk=lkNQk=L
15 eqeq2 L=QkQK=LQK=Qk
16 15 eqcoms Qk=LQK=LQK=Qk
17 16 notbid Qk=L¬QK=L¬QK=Qk
18 fveq2 K=kQK=Qk
19 18 eqcoms k=KQK=Qk
20 19 necon3bi ¬QK=QkkK
21 17 20 syl6bi Qk=L¬QK=LkK
22 21 com12 ¬QK=LQk=LkK
23 22 pm4.71rd ¬QK=LQk=LkKQk=L
24 23 rexbidv ¬QK=LkNQk=LkNkKQk=L
25 rexdifsn kNKQk=LkNkKQk=L
26 24 25 bitr4di ¬QK=LkNQk=LkNKQk=L
27 14 26 syl5ibcom LNlNkNQk=l¬QK=LkNKQk=L
28 27 ex LNlNkNQk=l¬QK=LkNKQk=L
29 28 com13 ¬QK=LlNkNQk=lLNkNKQk=L
30 11 29 syl5 ¬QK=LQPLNkNKQk=L
31 10 30 jaoi ¬QP¬QK=LQPLNkNKQk=L
32 31 com13 LNQP¬QP¬QK=LkNKQk=L
33 32 impd LNQP¬QP¬QK=LkNKQk=L
34 9 33 biimtrid LNQPqP|qK=LkNKQk=L