Metamath Proof Explorer


Theorem symgfixfo

Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is an onto function. (Contributed by AV, 7-Jan-2019)

Ref Expression
Hypotheses symgfixf.p P=BaseSymGrpN
symgfixf.q Q=qP|qK=K
symgfixf.s S=BaseSymGrpNK
symgfixf.h H=qQqNK
Assertion symgfixfo NVKNH:QontoS

Proof

Step Hyp Ref Expression
1 symgfixf.p P=BaseSymGrpN
2 symgfixf.q Q=qP|qK=K
3 symgfixf.s S=BaseSymGrpNK
4 symgfixf.h H=qQqNK
5 1 2 3 4 symgfixf KNH:QS
6 5 adantl NVKNH:QS
7 eqeq1 i=ji=Kj=K
8 fveq2 i=jsi=sj
9 7 8 ifbieq2d i=jifi=KKsi=ifj=KKsj
10 9 cbvmptv iNifi=KKsi=jNifj=KKsj
11 1 2 3 4 10 symgfixfolem1 NVKNsSiNifi=KKsiQ
12 11 3expa NVKNsSiNifi=KKsiQ
13 simpr NVKNKN
14 13 anim1i NVKNsSKNsS
15 14 adantl p=iNifi=KKsiNVKNsSKNsS
16 eqid iNifi=KKsi=iNifi=KKsi
17 3 16 symgextres KNsSiNifi=KKsiNK=s
18 15 17 syl p=iNifi=KKsiNVKNsSiNifi=KKsiNK=s
19 18 eqcomd p=iNifi=KKsiNVKNsSs=iNifi=KKsiNK
20 reseq1 p=iNifi=KKsipNK=iNifi=KKsiNK
21 20 eqeq2d p=iNifi=KKsis=pNKs=iNifi=KKsiNK
22 21 adantr p=iNifi=KKsiNVKNsSs=pNKs=iNifi=KKsiNK
23 19 22 mpbird p=iNifi=KKsiNVKNsSs=pNK
24 23 ex p=iNifi=KKsiNVKNsSs=pNK
25 24 adantl NVKNsSp=iNifi=KKsiNVKNsSs=pNK
26 12 25 rspcimedv NVKNsSNVKNsSpQs=pNK
27 26 pm2.43i NVKNsSpQs=pNK
28 4 fvtresfn pQHp=pNK
29 28 eqeq2d pQs=Hps=pNK
30 29 adantl NVKNsSpQs=Hps=pNK
31 30 rexbidva NVKNsSpQs=HppQs=pNK
32 27 31 mpbird NVKNsSpQs=Hp
33 32 ralrimiva NVKNsSpQs=Hp
34 dffo3 H:QontoSH:QSsSpQs=Hp
35 6 33 34 sylanbrc NVKNH:QontoS