| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addcl |
|
| 2 |
1
|
adantr |
|
| 3 |
|
simpr3 |
|
| 4 |
|
tanval |
|
| 5 |
2 3 4
|
syl2anc |
|
| 6 |
|
sinadd |
|
| 7 |
6
|
adantr |
|
| 8 |
|
cosadd |
|
| 9 |
8
|
adantr |
|
| 10 |
7 9
|
oveq12d |
|
| 11 |
|
simpll |
|
| 12 |
11
|
coscld |
|
| 13 |
|
simplr |
|
| 14 |
13
|
coscld |
|
| 15 |
12 14
|
mulcld |
|
| 16 |
|
simpr1 |
|
| 17 |
11 16
|
tancld |
|
| 18 |
|
simpr2 |
|
| 19 |
13 18
|
tancld |
|
| 20 |
15 17 19
|
adddid |
|
| 21 |
12 14 17
|
mul32d |
|
| 22 |
|
tanval |
|
| 23 |
11 16 22
|
syl2anc |
|
| 24 |
23
|
oveq2d |
|
| 25 |
11
|
sincld |
|
| 26 |
25 12 16
|
divcan2d |
|
| 27 |
24 26
|
eqtrd |
|
| 28 |
27
|
oveq1d |
|
| 29 |
21 28
|
eqtrd |
|
| 30 |
12 14 19
|
mulassd |
|
| 31 |
|
tanval |
|
| 32 |
13 18 31
|
syl2anc |
|
| 33 |
32
|
oveq2d |
|
| 34 |
13
|
sincld |
|
| 35 |
34 14 18
|
divcan2d |
|
| 36 |
33 35
|
eqtrd |
|
| 37 |
36
|
oveq2d |
|
| 38 |
30 37
|
eqtrd |
|
| 39 |
29 38
|
oveq12d |
|
| 40 |
20 39
|
eqtrd |
|
| 41 |
|
1cnd |
|
| 42 |
17 19
|
mulcld |
|
| 43 |
15 41 42
|
subdid |
|
| 44 |
15
|
mulridd |
|
| 45 |
12 14 17 19
|
mul4d |
|
| 46 |
27 36
|
oveq12d |
|
| 47 |
45 46
|
eqtrd |
|
| 48 |
44 47
|
oveq12d |
|
| 49 |
43 48
|
eqtrd |
|
| 50 |
40 49
|
oveq12d |
|
| 51 |
17 19
|
addcld |
|
| 52 |
|
ax-1cn |
|
| 53 |
|
subcl |
|
| 54 |
52 42 53
|
sylancr |
|
| 55 |
|
tanaddlem |
|
| 56 |
55
|
3adantr3 |
|
| 57 |
3 56
|
mpbid |
|
| 58 |
57
|
necomd |
|
| 59 |
|
subeq0 |
|
| 60 |
59
|
necon3bid |
|
| 61 |
52 42 60
|
sylancr |
|
| 62 |
58 61
|
mpbird |
|
| 63 |
12 14 16 18
|
mulne0d |
|
| 64 |
51 54 15 62 63
|
divcan5d |
|
| 65 |
10 50 64
|
3eqtr2rd |
|
| 66 |
5 65
|
eqtr4d |
|