Metamath Proof Explorer


Theorem tanhlt1

Description: The hyperbolic tangent of a real number is upper bounded by 1 . (Contributed by Mario Carneiro, 4-Apr-2015)

Ref Expression
Assertion tanhlt1 AtaniAi<1

Proof

Step Hyp Ref Expression
1 ax-icn i
2 recn AA
3 mulcl iAiA
4 1 2 3 sylancr AiA
5 rpcoshcl AcosiA+
6 5 rpne0d AcosiA0
7 tanval iAcosiA0taniA=siniAcosiA
8 4 6 7 syl2anc AtaniA=siniAcosiA
9 8 oveq1d AtaniAi=siniAcosiAi
10 4 sincld AsiniA
11 recoshcl AcosiA
12 11 recnd AcosiA
13 1 a1i Ai
14 ine0 i0
15 14 a1i Ai0
16 10 12 13 6 15 divdiv32d AsiniAcosiAi=siniAicosiA
17 sinhval AsiniAi=eAeA2
18 2 17 syl AsiniAi=eAeA2
19 coshval AcosiA=eA+eA2
20 2 19 syl AcosiA=eA+eA2
21 18 20 oveq12d AsiniAicosiA=eAeA2eA+eA2
22 9 16 21 3eqtrd AtaniAi=eAeA2eA+eA2
23 reefcl AeA
24 renegcl AA
25 24 reefcld AeA
26 23 25 resubcld AeAeA
27 26 recnd AeAeA
28 23 25 readdcld AeA+eA
29 28 recnd AeA+eA
30 2cnd A2
31 20 6 eqnetrrd AeA+eA20
32 2ne0 20
33 32 a1i A20
34 29 30 33 divne0bd AeA+eA0eA+eA20
35 31 34 mpbird AeA+eA0
36 27 29 30 35 33 divcan7d AeAeA2eA+eA2=eAeAeA+eA
37 22 36 eqtrd AtaniAi=eAeAeA+eA
38 24 rpefcld AeA+
39 23 38 ltsubrpd AeAeA<eA
40 23 38 ltaddrpd AeA<eA+eA
41 26 23 28 39 40 lttrd AeAeA<eA+eA
42 29 mulridd AeA+eA1=eA+eA
43 41 42 breqtrrd AeAeA<eA+eA1
44 1red A1
45 efgt0 A0<eA
46 efgt0 A0<eA
47 24 46 syl A0<eA
48 23 25 45 47 addgt0d A0<eA+eA
49 ltdivmul eAeA1eA+eA0<eA+eAeAeAeA+eA<1eAeA<eA+eA1
50 26 44 28 48 49 syl112anc AeAeAeA+eA<1eAeA<eA+eA1
51 43 50 mpbird AeAeAeA+eA<1
52 37 51 eqbrtrd AtaniAi<1