Metamath Proof Explorer


Theorem tanhlt1

Description: The hyperbolic tangent of a real number is upper bounded by 1 . (Contributed by Mario Carneiro, 4-Apr-2015)

Ref Expression
Assertion tanhlt1 A tan i A i < 1

Proof

Step Hyp Ref Expression
1 ax-icn i
2 recn A A
3 mulcl i A i A
4 1 2 3 sylancr A i A
5 rpcoshcl A cos i A +
6 5 rpne0d A cos i A 0
7 tanval i A cos i A 0 tan i A = sin i A cos i A
8 4 6 7 syl2anc A tan i A = sin i A cos i A
9 8 oveq1d A tan i A i = sin i A cos i A i
10 4 sincld A sin i A
11 recoshcl A cos i A
12 11 recnd A cos i A
13 1 a1i A i
14 ine0 i 0
15 14 a1i A i 0
16 10 12 13 6 15 divdiv32d A sin i A cos i A i = sin i A i cos i A
17 sinhval A sin i A i = e A e A 2
18 2 17 syl A sin i A i = e A e A 2
19 coshval A cos i A = e A + e A 2
20 2 19 syl A cos i A = e A + e A 2
21 18 20 oveq12d A sin i A i cos i A = e A e A 2 e A + e A 2
22 9 16 21 3eqtrd A tan i A i = e A e A 2 e A + e A 2
23 reefcl A e A
24 renegcl A A
25 24 reefcld A e A
26 23 25 resubcld A e A e A
27 26 recnd A e A e A
28 23 25 readdcld A e A + e A
29 28 recnd A e A + e A
30 2cnd A 2
31 20 6 eqnetrrd A e A + e A 2 0
32 2ne0 2 0
33 32 a1i A 2 0
34 29 30 33 divne0bd A e A + e A 0 e A + e A 2 0
35 31 34 mpbird A e A + e A 0
36 27 29 30 35 33 divcan7d A e A e A 2 e A + e A 2 = e A e A e A + e A
37 22 36 eqtrd A tan i A i = e A e A e A + e A
38 24 rpefcld A e A +
39 23 38 ltsubrpd A e A e A < e A
40 23 38 ltaddrpd A e A < e A + e A
41 26 23 28 39 40 lttrd A e A e A < e A + e A
42 29 mulid1d A e A + e A 1 = e A + e A
43 41 42 breqtrrd A e A e A < e A + e A 1
44 1red A 1
45 efgt0 A 0 < e A
46 efgt0 A 0 < e A
47 24 46 syl A 0 < e A
48 23 25 45 47 addgt0d A 0 < e A + e A
49 ltdivmul e A e A 1 e A + e A 0 < e A + e A e A e A e A + e A < 1 e A e A < e A + e A 1
50 26 44 28 48 49 syl112anc A e A e A e A + e A < 1 e A e A < e A + e A 1
51 43 50 mpbird A e A e A e A + e A < 1
52 37 51 eqbrtrd A tan i A i < 1