Metamath Proof Explorer


Theorem tendoid

Description: The identity value of a trace-preserving endomorphism. (Contributed by NM, 21-Jun-2013)

Ref Expression
Hypotheses tendoid.b B=BaseK
tendoid.h H=LHypK
tendoid.e E=TEndoKW
Assertion tendoid KHLWHSESIB=IB

Proof

Step Hyp Ref Expression
1 tendoid.b B=BaseK
2 tendoid.h H=LHypK
3 tendoid.e E=TEndoKW
4 eqid LTrnKW=LTrnKW
5 1 2 4 idltrn KHLWHIBLTrnKW
6 5 adantr KHLWHSEIBLTrnKW
7 eqid K=K
8 eqid trLKW=trLKW
9 7 2 4 8 3 tendotp KHLWHSEIBLTrnKWtrLKWSIBKtrLKWIB
10 6 9 mpd3an3 KHLWHSEtrLKWSIBKtrLKWIB
11 eqid 0.K=0.K
12 1 11 2 8 trlid0 KHLWHtrLKWIB=0.K
13 12 adantr KHLWHSEtrLKWIB=0.K
14 10 13 breqtrd KHLWHSEtrLKWSIBK0.K
15 hlop KHLKOP
16 15 ad2antrr KHLWHSEKOP
17 2 4 3 tendocl KHLWHSEIBLTrnKWSIBLTrnKW
18 6 17 mpd3an3 KHLWHSESIBLTrnKW
19 1 2 4 8 trlcl KHLWHSIBLTrnKWtrLKWSIBB
20 18 19 syldan KHLWHSEtrLKWSIBB
21 1 7 11 ople0 KOPtrLKWSIBBtrLKWSIBK0.KtrLKWSIB=0.K
22 16 20 21 syl2anc KHLWHSEtrLKWSIBK0.KtrLKWSIB=0.K
23 14 22 mpbid KHLWHSEtrLKWSIB=0.K
24 1 11 2 4 8 trlid0b KHLWHSIBLTrnKWSIB=IBtrLKWSIB=0.K
25 18 24 syldan KHLWHSESIB=IBtrLKWSIB=0.K
26 23 25 mpbird KHLWHSESIB=IB