Metamath Proof Explorer


Theorem tendoidcl

Description: The identity is a trace-preserving endomorphism. (Contributed by NM, 30-Jul-2013)

Ref Expression
Hypotheses tendof.h H=LHypK
tendof.t T=LTrnKW
tendof.e E=TEndoKW
Assertion tendoidcl KHLWHITE

Proof

Step Hyp Ref Expression
1 tendof.h H=LHypK
2 tendof.t T=LTrnKW
3 tendof.e E=TEndoKW
4 eqid K=K
5 eqid trLKW=trLKW
6 id KHLWHKHLWH
7 f1oi IT:T1-1 ontoT
8 f1of IT:T1-1 ontoTIT:TT
9 7 8 mp1i KHLWHIT:TT
10 1 2 ltrnco KHLWHfTgTfgT
11 fvresi fgTITfg=fg
12 10 11 syl KHLWHfTgTITfg=fg
13 fvresi fTITf=f
14 13 3ad2ant2 KHLWHfTgTITf=f
15 fvresi gTITg=g
16 15 3ad2ant3 KHLWHfTgTITg=g
17 14 16 coeq12d KHLWHfTgTITfITg=fg
18 12 17 eqtr4d KHLWHfTgTITfg=ITfITg
19 13 adantl KHLWHfTITf=f
20 19 fveq2d KHLWHfTtrLKWITf=trLKWf
21 hllat KHLKLat
22 21 ad2antrr KHLWHfTKLat
23 eqid BaseK=BaseK
24 23 1 2 5 trlcl KHLWHfTtrLKWfBaseK
25 23 4 latref KLattrLKWfBaseKtrLKWfKtrLKWf
26 22 24 25 syl2anc KHLWHfTtrLKWfKtrLKWf
27 20 26 eqbrtrd KHLWHfTtrLKWITfKtrLKWf
28 4 1 2 5 3 6 9 18 27 istendod KHLWHITE