Metamath Proof Explorer


Theorem tfrlem5

Description: Lemma for transfinite recursion. The values of two acceptable functions are the same within their domains. (Contributed by NM, 9-Apr-1995) (Revised by Mario Carneiro, 24-May-2019)

Ref Expression
Hypothesis tfrlem.1 A=f|xOnfFnxyxfy=Ffy
Assertion tfrlem5 gAhAxguxhvu=v

Proof

Step Hyp Ref Expression
1 tfrlem.1 A=f|xOnfFnxyxfy=Ffy
2 vex gV
3 1 2 tfrlem3a gAzOngFnzazga=Fga
4 vex hV
5 1 4 tfrlem3a hAwOnhFnwawha=Fha
6 reeanv zOnwOngFnzazga=FgahFnwawha=FhazOngFnzazga=FgawOnhFnwawha=Fha
7 fveq2 a=xga=gx
8 fveq2 a=xha=hx
9 7 8 eqeq12d a=xga=hagx=hx
10 onin zOnwOnzwOn
11 10 3ad2ant1 zOnwOngFnzazga=FgahFnwawha=FhaxguxhvzwOn
12 simp2ll zOnwOngFnzazga=FgahFnwawha=FhaxguxhvgFnz
13 fnfun gFnzFung
14 12 13 syl zOnwOngFnzazga=FgahFnwawha=FhaxguxhvFung
15 inss1 zwz
16 12 fndmd zOnwOngFnzazga=FgahFnwawha=Fhaxguxhvdomg=z
17 15 16 sseqtrrid zOnwOngFnzazga=FgahFnwawha=Fhaxguxhvzwdomg
18 14 17 jca zOnwOngFnzazga=FgahFnwawha=FhaxguxhvFungzwdomg
19 simp2rl zOnwOngFnzazga=FgahFnwawha=FhaxguxhvhFnw
20 fnfun hFnwFunh
21 19 20 syl zOnwOngFnzazga=FgahFnwawha=FhaxguxhvFunh
22 inss2 zww
23 19 fndmd zOnwOngFnzazga=FgahFnwawha=Fhaxguxhvdomh=w
24 22 23 sseqtrrid zOnwOngFnzazga=FgahFnwawha=Fhaxguxhvzwdomh
25 21 24 jca zOnwOngFnzazga=FgahFnwawha=FhaxguxhvFunhzwdomh
26 simp2lr zOnwOngFnzazga=FgahFnwawha=Fhaxguxhvazga=Fga
27 ssralv zwzazga=Fgaazwga=Fga
28 15 26 27 mpsyl zOnwOngFnzazga=FgahFnwawha=Fhaxguxhvazwga=Fga
29 simp2rr zOnwOngFnzazga=FgahFnwawha=Fhaxguxhvawha=Fha
30 ssralv zwwawha=Fhaazwha=Fha
31 22 29 30 mpsyl zOnwOngFnzazga=FgahFnwawha=Fhaxguxhvazwha=Fha
32 11 18 25 28 31 tfrlem1 zOnwOngFnzazga=FgahFnwawha=Fhaxguxhvazwga=ha
33 simp3l zOnwOngFnzazga=FgahFnwawha=Fhaxguxhvxgu
34 fnbr gFnzxguxz
35 12 33 34 syl2anc zOnwOngFnzazga=FgahFnwawha=Fhaxguxhvxz
36 simp3r zOnwOngFnzazga=FgahFnwawha=Fhaxguxhvxhv
37 fnbr hFnwxhvxw
38 19 36 37 syl2anc zOnwOngFnzazga=FgahFnwawha=Fhaxguxhvxw
39 35 38 elind zOnwOngFnzazga=FgahFnwawha=Fhaxguxhvxzw
40 9 32 39 rspcdva zOnwOngFnzazga=FgahFnwawha=Fhaxguxhvgx=hx
41 funbrfv Fungxgugx=u
42 14 33 41 sylc zOnwOngFnzazga=FgahFnwawha=Fhaxguxhvgx=u
43 funbrfv Funhxhvhx=v
44 21 36 43 sylc zOnwOngFnzazga=FgahFnwawha=Fhaxguxhvhx=v
45 40 42 44 3eqtr3d zOnwOngFnzazga=FgahFnwawha=Fhaxguxhvu=v
46 45 3exp zOnwOngFnzazga=FgahFnwawha=Fhaxguxhvu=v
47 46 rexlimivv zOnwOngFnzazga=FgahFnwawha=Fhaxguxhvu=v
48 6 47 sylbir zOngFnzazga=FgawOnhFnwawha=Fhaxguxhvu=v
49 3 5 48 syl2anb gAhAxguxhvu=v