Metamath Proof Explorer


Theorem tmslem

Description: Lemma for tmsbas , tmsds , and tmstopn . (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tmsval.m M=BasendxXdistndxD
tmsval.k K=toMetSpD
Assertion tmslem D∞MetXX=BaseKD=distKMetOpenD=TopOpenK

Proof

Step Hyp Ref Expression
1 tmsval.m M=BasendxXdistndxD
2 tmsval.k K=toMetSpD
3 elfvdm D∞MetXXdom∞Met
4 basendxltdsndx Basendx<distndx
5 dsndxnn distndx
6 1 4 5 2strbas1 Xdom∞MetX=BaseM
7 3 6 syl D∞MetXX=BaseM
8 xmetf D∞MetXD:X×X*
9 ffn D:X×X*DFnX×X
10 fnresdm DFnX×XDX×X=D
11 8 9 10 3syl D∞MetXDX×X=D
12 dsid dist=Slotdistndx
13 1 4 5 12 2strop1 D∞MetXD=distM
14 13 reseq1d D∞MetXDX×X=distMX×X
15 11 14 eqtr3d D∞MetXD=distMX×X
16 1 2 tmsval D∞MetXK=MsSetTopSetndxMetOpenD
17 7 15 16 setsmsbas D∞MetXX=BaseK
18 7 15 16 setsmsds D∞MetXdistM=distK
19 13 18 eqtrd D∞MetXD=distK
20 prex BasendxXdistndxDV
21 1 20 eqeltri MV
22 21 a1i D∞MetXMV
23 7 15 16 22 setsmstopn D∞MetXMetOpenD=TopOpenK
24 17 19 23 3jca D∞MetXX=BaseKD=distKMetOpenD=TopOpenK