Metamath Proof Explorer


Theorem tmslemOLD

Description: Obsolete version of tmslem as of 28-Oct-2024. Lemma for tmsbas , tmsds , and tmstopn . (Contributed by Mario Carneiro, 2-Sep-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses tmsval.m M=BasendxXdistndxD
tmsval.k K=toMetSpD
Assertion tmslemOLD D∞MetXX=BaseKD=distKMetOpenD=TopOpenK

Proof

Step Hyp Ref Expression
1 tmsval.m M=BasendxXdistndxD
2 tmsval.k K=toMetSpD
3 elfvdm D∞MetXXdom∞Met
4 df-ds dist=Slot12
5 1nn 1
6 2nn0 20
7 1nn0 10
8 1lt10 1<10
9 5 6 7 8 declti 1<12
10 2nn 2
11 7 10 decnncl 12
12 1 4 9 11 2strbas Xdom∞MetX=BaseM
13 3 12 syl D∞MetXX=BaseM
14 xmetf D∞MetXD:X×X*
15 ffn D:X×X*DFnX×X
16 fnresdm DFnX×XDX×X=D
17 14 15 16 3syl D∞MetXDX×X=D
18 1 4 9 11 2strop D∞MetXD=distM
19 18 reseq1d D∞MetXDX×X=distMX×X
20 17 19 eqtr3d D∞MetXD=distMX×X
21 1 2 tmsval D∞MetXK=MsSetTopSetndxMetOpenD
22 13 20 21 setsmsbas D∞MetXX=BaseK
23 13 20 21 setsmsds D∞MetXdistM=distK
24 18 23 eqtrd D∞MetXD=distK
25 prex BasendxXdistndxDV
26 1 25 eqeltri MV
27 26 a1i D∞MetXMV
28 13 20 21 27 setsmstopn D∞MetXMetOpenD=TopOpenK
29 22 24 28 3jca D∞MetXX=BaseKD=distKMetOpenD=TopOpenK