Metamath Proof Explorer


Theorem tmsxpsval

Description: Value of the product of two metrics. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tmsxps.p P = dist toMetSp M × 𝑠 toMetSp N
tmsxps.1 φ M ∞Met X
tmsxps.2 φ N ∞Met Y
tmsxpsval.a φ A X
tmsxpsval.b φ B Y
tmsxpsval.c φ C X
tmsxpsval.d φ D Y
Assertion tmsxpsval φ A B P C D = sup A M C B N D * <

Proof

Step Hyp Ref Expression
1 tmsxps.p P = dist toMetSp M × 𝑠 toMetSp N
2 tmsxps.1 φ M ∞Met X
3 tmsxps.2 φ N ∞Met Y
4 tmsxpsval.a φ A X
5 tmsxpsval.b φ B Y
6 tmsxpsval.c φ C X
7 tmsxpsval.d φ D Y
8 eqid toMetSp M × 𝑠 toMetSp N = toMetSp M × 𝑠 toMetSp N
9 eqid Base toMetSp M = Base toMetSp M
10 eqid Base toMetSp N = Base toMetSp N
11 eqid toMetSp M = toMetSp M
12 11 tmsxms M ∞Met X toMetSp M ∞MetSp
13 2 12 syl φ toMetSp M ∞MetSp
14 eqid toMetSp N = toMetSp N
15 14 tmsxms N ∞Met Y toMetSp N ∞MetSp
16 3 15 syl φ toMetSp N ∞MetSp
17 eqid dist toMetSp M Base toMetSp M × Base toMetSp M = dist toMetSp M Base toMetSp M × Base toMetSp M
18 eqid dist toMetSp N Base toMetSp N × Base toMetSp N = dist toMetSp N Base toMetSp N × Base toMetSp N
19 11 tmsds M ∞Met X M = dist toMetSp M
20 2 19 syl φ M = dist toMetSp M
21 11 tmsbas M ∞Met X X = Base toMetSp M
22 2 21 syl φ X = Base toMetSp M
23 22 fveq2d φ ∞Met X = ∞Met Base toMetSp M
24 2 20 23 3eltr3d φ dist toMetSp M ∞Met Base toMetSp M
25 ssid Base toMetSp M Base toMetSp M
26 xmetres2 dist toMetSp M ∞Met Base toMetSp M Base toMetSp M Base toMetSp M dist toMetSp M Base toMetSp M × Base toMetSp M ∞Met Base toMetSp M
27 24 25 26 sylancl φ dist toMetSp M Base toMetSp M × Base toMetSp M ∞Met Base toMetSp M
28 14 tmsds N ∞Met Y N = dist toMetSp N
29 3 28 syl φ N = dist toMetSp N
30 14 tmsbas N ∞Met Y Y = Base toMetSp N
31 3 30 syl φ Y = Base toMetSp N
32 31 fveq2d φ ∞Met Y = ∞Met Base toMetSp N
33 3 29 32 3eltr3d φ dist toMetSp N ∞Met Base toMetSp N
34 ssid Base toMetSp N Base toMetSp N
35 xmetres2 dist toMetSp N ∞Met Base toMetSp N Base toMetSp N Base toMetSp N dist toMetSp N Base toMetSp N × Base toMetSp N ∞Met Base toMetSp N
36 33 34 35 sylancl φ dist toMetSp N Base toMetSp N × Base toMetSp N ∞Met Base toMetSp N
37 4 22 eleqtrd φ A Base toMetSp M
38 5 31 eleqtrd φ B Base toMetSp N
39 6 22 eleqtrd φ C Base toMetSp M
40 7 31 eleqtrd φ D Base toMetSp N
41 8 9 10 13 16 1 17 18 27 36 37 38 39 40 xpsdsval φ A B P C D = sup A dist toMetSp M Base toMetSp M × Base toMetSp M C B dist toMetSp N Base toMetSp N × Base toMetSp N D * <
42 37 39 ovresd φ A dist toMetSp M Base toMetSp M × Base toMetSp M C = A dist toMetSp M C
43 20 oveqd φ A M C = A dist toMetSp M C
44 42 43 eqtr4d φ A dist toMetSp M Base toMetSp M × Base toMetSp M C = A M C
45 38 40 ovresd φ B dist toMetSp N Base toMetSp N × Base toMetSp N D = B dist toMetSp N D
46 29 oveqd φ B N D = B dist toMetSp N D
47 45 46 eqtr4d φ B dist toMetSp N Base toMetSp N × Base toMetSp N D = B N D
48 44 47 preq12d φ A dist toMetSp M Base toMetSp M × Base toMetSp M C B dist toMetSp N Base toMetSp N × Base toMetSp N D = A M C B N D
49 48 supeq1d φ sup A dist toMetSp M Base toMetSp M × Base toMetSp M C B dist toMetSp N Base toMetSp N × Base toMetSp N D * < = sup A M C B N D * <
50 41 49 eqtrd φ A B P C D = sup A M C B N D * <