Metamath Proof Explorer


Theorem tngdim

Description: Dimension of a left vector space augmented with a norm. (Contributed by Thierry Arnoux, 20-May-2023)

Ref Expression
Hypothesis tnglvec.t T=GtoNrmGrpN
Assertion tngdim GLVecNVdimG=dimT

Proof

Step Hyp Ref Expression
1 tnglvec.t T=GtoNrmGrpN
2 eqidd GLVecNVBaseG=BaseG
3 eqid BaseG=BaseG
4 1 3 tngbas NVBaseG=BaseT
5 4 adantl GLVecNVBaseG=BaseT
6 ssidd GLVecNVBaseGBaseG
7 eqid +G=+G
8 1 7 tngplusg NV+G=+T
9 8 adantl GLVecNV+G=+T
10 9 oveqdr GLVecNVxBaseGyBaseGx+Gy=x+Ty
11 lveclmod GLVecGLMod
12 eqid ScalarG=ScalarG
13 eqid G=G
14 eqid BaseScalarG=BaseScalarG
15 3 12 13 14 lmodvscl GLModxBaseScalarGyBaseGxGyBaseG
16 15 3expb GLModxBaseScalarGyBaseGxGyBaseG
17 11 16 sylan GLVecxBaseScalarGyBaseGxGyBaseG
18 17 adantlr GLVecNVxBaseScalarGyBaseGxGyBaseG
19 1 13 tngvsca NVG=T
20 19 adantl GLVecNVG=T
21 20 oveqdr GLVecNVxBaseScalarGyBaseGxGy=xTy
22 eqid ScalarT=ScalarT
23 eqidd GLVecNVBaseScalarG=BaseScalarG
24 1 12 tngsca NVScalarG=ScalarT
25 24 adantl GLVecNVScalarG=ScalarT
26 25 fveq2d GLVecNVBaseScalarG=BaseScalarT
27 25 fveq2d GLVecNV+ScalarG=+ScalarT
28 27 oveqdr GLVecNVxBaseScalarGyBaseScalarGx+ScalarGy=x+ScalarTy
29 simpl GLVecNVGLVec
30 1 tnglvec NVGLVecTLVec
31 30 biimpac GLVecNVTLVec
32 2 5 6 10 18 21 12 22 23 26 28 29 31 dimpropd GLVecNVdimG=dimT