Description: A cyclic permutation is a cyclic shift on its orbit. (Contributed by Thierry Arnoux, 15-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tocycval.1 | |
|
tocycfv.d | |
||
tocycfv.w | |
||
tocycfv.1 | |
||
Assertion | tocycfvres1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tocycval.1 | |
|
2 | tocycfv.d | |
|
3 | tocycfv.w | |
|
4 | tocycfv.1 | |
|
5 | 1 2 3 4 | tocycfv | |
6 | 5 | reseq1d | |
7 | fnresi | |
|
8 | 7 | a1i | |
9 | 1zzd | |
|
10 | cshwfn | |
|
11 | 3 9 10 | syl2anc | |
12 | f1f1orn | |
|
13 | f1ocnv | |
|
14 | f1ofn | |
|
15 | 4 12 13 14 | 4syl | |
16 | dfdm4 | |
|
17 | wrddm | |
|
18 | 3 17 | syl | |
19 | ssidd | |
|
20 | 18 19 | eqsstrd | |
21 | 16 20 | eqsstrrid | |
22 | fnco | |
|
23 | 11 15 21 22 | syl3anc | |
24 | disjdifr | |
|
25 | 24 | a1i | |
26 | fnunres2 | |
|
27 | 8 23 25 26 | syl3anc | |
28 | 6 27 | eqtrd | |