Metamath Proof Explorer


Theorem tocycfvres2

Description: A cyclic permutation is the identity outside of its orbit. (Contributed by Thierry Arnoux, 15-Oct-2023)

Ref Expression
Hypotheses tocycval.1 C=toCycD
tocycfv.d φDV
tocycfv.w φWWordD
tocycfv.1 φW:domW1-1D
Assertion tocycfvres2 φCWDranW=IDranW

Proof

Step Hyp Ref Expression
1 tocycval.1 C=toCycD
2 tocycfv.d φDV
3 tocycfv.w φWWordD
4 tocycfv.1 φW:domW1-1D
5 1 2 3 4 tocycfv φCW=IDranWWcyclShift1W-1
6 5 reseq1d φCWDranW=IDranWWcyclShift1W-1DranW
7 fnresi IDranWFnDranW
8 7 a1i φIDranWFnDranW
9 1zzd φ1
10 cshwfn WWordD1WcyclShift1Fn0..^W
11 3 9 10 syl2anc φWcyclShift1Fn0..^W
12 f1f1orn W:domW1-1DW:domW1-1 ontoranW
13 f1ocnv W:domW1-1 ontoranWW-1:ranW1-1 ontodomW
14 f1ofn W-1:ranW1-1 ontodomWW-1FnranW
15 4 12 13 14 4syl φW-1FnranW
16 dfdm4 domW=ranW-1
17 wrddm WWordDdomW=0..^W
18 3 17 syl φdomW=0..^W
19 ssidd φ0..^W0..^W
20 18 19 eqsstrd φdomW0..^W
21 16 20 eqsstrrid φranW-10..^W
22 fnco WcyclShift1Fn0..^WW-1FnranWranW-10..^WWcyclShift1W-1FnranW
23 11 15 21 22 syl3anc φWcyclShift1W-1FnranW
24 disjdifr DranWranW=
25 24 a1i φDranWranW=
26 fnunres1 IDranWFnDranWWcyclShift1W-1FnranWDranWranW=IDranWWcyclShift1W-1DranW=IDranW
27 8 23 25 26 syl3anc φIDranWWcyclShift1W-1DranW=IDranW
28 6 27 eqtrd φCWDranW=IDranW