Metamath Proof Explorer


Theorem trlval4

Description: The value of the trace of a lattice translation in terms of 2 atoms. (Contributed by NM, 3-May-2013)

Ref Expression
Hypotheses trlval3.l ˙=K
trlval3.j ˙=joinK
trlval3.m ˙=meetK
trlval3.a A=AtomsK
trlval3.h H=LHypK
trlval3.t T=LTrnKW
trlval3.r R=trLKW
Assertion trlval4 KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QRF=P˙FP˙Q˙FQ

Proof

Step Hyp Ref Expression
1 trlval3.l ˙=K
2 trlval3.j ˙=joinK
3 trlval3.m ˙=meetK
4 trlval3.a A=AtomsK
5 trlval3.h H=LHypK
6 trlval3.t T=LTrnKW
7 trlval3.r R=trLKW
8 simp1 KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QKHLWH
9 simp21 KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QFT
10 simp22 KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QPA¬P˙W
11 simp23 KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QQA¬Q˙W
12 simp3r KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙Q¬RF˙P˙Q
13 simpl1l KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQKHL
14 simp23l KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QQA
15 14 adantr KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQQA
16 simpl1 KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQKHLWH
17 simpl21 KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQFT
18 1 4 5 6 ltrnat KHLWHFTQAFQA
19 16 17 15 18 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQFQA
20 1 2 4 hlatlej1 KHLQAFQAQ˙Q˙FQ
21 13 15 19 20 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQQ˙Q˙FQ
22 simpl22 KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQPA¬P˙W
23 1 2 4 5 6 7 trljat1 KHLWHFTPA¬P˙WP˙RF=P˙FP
24 16 17 22 23 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQP˙RF=P˙FP
25 simpr KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQP˙FP=Q˙FQ
26 24 25 eqtrd KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQP˙RF=Q˙FQ
27 21 26 breqtrrd KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQQ˙P˙RF
28 simpl3r KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQ¬RF˙P˙Q
29 simpll1 KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQFP=PKHLWH
30 22 adantr KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQFP=PPA¬P˙W
31 17 adantr KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQFP=PFT
32 simpr KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQFP=PFP=P
33 eqid 0.K=0.K
34 1 33 4 5 6 7 trl0 KHLWHPA¬P˙WFTFP=PRF=0.K
35 29 30 31 32 34 syl112anc KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQFP=PRF=0.K
36 hlatl KHLKAtLat
37 13 36 syl KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQKAtLat
38 simp22l KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QPA
39 38 adantr KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQPA
40 eqid BaseK=BaseK
41 40 2 4 hlatjcl KHLPAQAP˙QBaseK
42 13 39 15 41 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQP˙QBaseK
43 40 1 33 atl0le KAtLatP˙QBaseK0.K˙P˙Q
44 37 42 43 syl2anc KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQ0.K˙P˙Q
45 44 adantr KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQFP=P0.K˙P˙Q
46 35 45 eqbrtrd KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQFP=PRF˙P˙Q
47 46 ex KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQFP=PRF˙P˙Q
48 47 necon3bd KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQ¬RF˙P˙QFPP
49 28 48 mpd KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQFPP
50 1 4 5 6 7 trlat KHLWHPA¬P˙WFTFPPRFA
51 16 22 17 49 50 syl112anc KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQRFA
52 simpl3l KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQPQ
53 52 necomd KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQQP
54 1 2 4 hlatexch1 KHLQARFAPAQPQ˙P˙RFRF˙P˙Q
55 13 15 51 39 53 54 syl131anc KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQQ˙P˙RFRF˙P˙Q
56 27 55 mpd KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQRF˙P˙Q
57 56 ex KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FP=Q˙FQRF˙P˙Q
58 57 necon3bd KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙Q¬RF˙P˙QP˙FPQ˙FQ
59 12 58 mpd KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QP˙FPQ˙FQ
60 1 2 3 4 5 6 7 trlval3 KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQRF=P˙FP˙Q˙FQ
61 8 9 10 11 59 60 syl113anc KHLWHFTPA¬P˙WQA¬Q˙WPQ¬RF˙P˙QRF=P˙FP˙Q˙FQ