Metamath Proof Explorer


Theorem tsmsval2

Description: Definition of the topological group sum(s) of a collection F ( x ) of values in the group with index set A . (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tsmsval.b B=BaseG
tsmsval.j J=TopOpenG
tsmsval.s S=𝒫AFin
tsmsval.l L=ranzSyS|zy
tsmsval.g φGV
tsmsval2.f φFW
tsmsval2.a φdomF=A
Assertion tsmsval2 φGtsumsF=JfLimfSfilGenLySGFy

Proof

Step Hyp Ref Expression
1 tsmsval.b B=BaseG
2 tsmsval.j J=TopOpenG
3 tsmsval.s S=𝒫AFin
4 tsmsval.l L=ranzSyS|zy
5 tsmsval.g φGV
6 tsmsval2.f φFW
7 tsmsval2.a φdomF=A
8 df-tsms tsums=wV,fV𝒫domfFin/sTopOpenwfLimfsfilGenranzsys|zyyswfy
9 8 a1i φtsums=wV,fV𝒫domfFin/sTopOpenwfLimfsfilGenranzsys|zyyswfy
10 vex fV
11 10 dmex domfV
12 11 pwex 𝒫domfV
13 12 inex1 𝒫domfFinV
14 13 a1i φw=Gf=F𝒫domfFinV
15 simplrl φw=Gf=Fs=𝒫domfFinw=G
16 15 fveq2d φw=Gf=Fs=𝒫domfFinTopOpenw=TopOpenG
17 16 2 eqtr4di φw=Gf=Fs=𝒫domfFinTopOpenw=J
18 id s=𝒫domfFins=𝒫domfFin
19 simprr φw=Gf=Ff=F
20 19 dmeqd φw=Gf=Fdomf=domF
21 7 adantr φw=Gf=FdomF=A
22 20 21 eqtrd φw=Gf=Fdomf=A
23 22 pweqd φw=Gf=F𝒫domf=𝒫A
24 23 ineq1d φw=Gf=F𝒫domfFin=𝒫AFin
25 24 3 eqtr4di φw=Gf=F𝒫domfFin=S
26 18 25 sylan9eqr φw=Gf=Fs=𝒫domfFins=S
27 26 rabeqdv φw=Gf=Fs=𝒫domfFinys|zy=yS|zy
28 26 27 mpteq12dv φw=Gf=Fs=𝒫domfFinzsys|zy=zSyS|zy
29 28 rneqd φw=Gf=Fs=𝒫domfFinranzsys|zy=ranzSyS|zy
30 29 4 eqtr4di φw=Gf=Fs=𝒫domfFinranzsys|zy=L
31 26 30 oveq12d φw=Gf=Fs=𝒫domfFinsfilGenranzsys|zy=SfilGenL
32 17 31 oveq12d φw=Gf=Fs=𝒫domfFinTopOpenwfLimfsfilGenranzsys|zy=JfLimfSfilGenL
33 simplrr φw=Gf=Fs=𝒫domfFinf=F
34 33 reseq1d φw=Gf=Fs=𝒫domfFinfy=Fy
35 15 34 oveq12d φw=Gf=Fs=𝒫domfFinwfy=GFy
36 26 35 mpteq12dv φw=Gf=Fs=𝒫domfFinyswfy=ySGFy
37 32 36 fveq12d φw=Gf=Fs=𝒫domfFinTopOpenwfLimfsfilGenranzsys|zyyswfy=JfLimfSfilGenLySGFy
38 14 37 csbied φw=Gf=F𝒫domfFin/sTopOpenwfLimfsfilGenranzsys|zyyswfy=JfLimfSfilGenLySGFy
39 5 elexd φGV
40 6 elexd φFV
41 fvexd φJfLimfSfilGenLySGFyV
42 9 38 39 40 41 ovmpod φGtsumsF=JfLimfSfilGenLySGFy