Metamath Proof Explorer


Theorem tx1cn

Description: Continuity of the first projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 22-Aug-2015)

Ref Expression
Assertion tx1cn RTopOnXSTopOnY1stX×YR×tSCnR

Proof

Step Hyp Ref Expression
1 f1stres 1stX×Y:X×YX
2 1 a1i RTopOnXSTopOnY1stX×Y:X×YX
3 ffn 1stX×Y:X×YX1stX×YFnX×Y
4 elpreima 1stX×YFnX×Yz1stX×Y-1wzX×Y1stX×Yzw
5 1 3 4 mp2b z1stX×Y-1wzX×Y1stX×Yzw
6 fvres zX×Y1stX×Yz=1stz
7 6 eleq1d zX×Y1stX×Yzw1stzw
8 1st2nd2 zX×Yz=1stz2ndz
9 xp2nd zX×Y2ndzY
10 elxp6 zw×Yz=1stz2ndz1stzw2ndzY
11 anass z=1stz2ndz1stzw2ndzYz=1stz2ndz1stzw2ndzY
12 an32 z=1stz2ndz1stzw2ndzYz=1stz2ndz2ndzY1stzw
13 10 11 12 3bitr2i zw×Yz=1stz2ndz2ndzY1stzw
14 13 baib z=1stz2ndz2ndzYzw×Y1stzw
15 8 9 14 syl2anc zX×Yzw×Y1stzw
16 7 15 bitr4d zX×Y1stX×Yzwzw×Y
17 16 pm5.32i zX×Y1stX×YzwzX×Yzw×Y
18 5 17 bitri z1stX×Y-1wzX×Yzw×Y
19 toponss RTopOnXwRwX
20 19 adantlr RTopOnXSTopOnYwRwX
21 xpss1 wXw×YX×Y
22 20 21 syl RTopOnXSTopOnYwRw×YX×Y
23 22 sseld RTopOnXSTopOnYwRzw×YzX×Y
24 23 pm4.71rd RTopOnXSTopOnYwRzw×YzX×Yzw×Y
25 18 24 bitr4id RTopOnXSTopOnYwRz1stX×Y-1wzw×Y
26 25 eqrdv RTopOnXSTopOnYwR1stX×Y-1w=w×Y
27 toponmax STopOnYYS
28 27 ad2antlr RTopOnXSTopOnYwRYS
29 txopn RTopOnXSTopOnYwRYSw×YR×tS
30 29 anassrs RTopOnXSTopOnYwRYSw×YR×tS
31 28 30 mpdan RTopOnXSTopOnYwRw×YR×tS
32 26 31 eqeltrd RTopOnXSTopOnYwR1stX×Y-1wR×tS
33 32 ralrimiva RTopOnXSTopOnYwR1stX×Y-1wR×tS
34 txtopon RTopOnXSTopOnYR×tSTopOnX×Y
35 simpl RTopOnXSTopOnYRTopOnX
36 iscn R×tSTopOnX×YRTopOnX1stX×YR×tSCnR1stX×Y:X×YXwR1stX×Y-1wR×tS
37 34 35 36 syl2anc RTopOnXSTopOnY1stX×YR×tSCnR1stX×Y:X×YXwR1stX×Y-1wR×tS
38 2 33 37 mpbir2and RTopOnXSTopOnY1stX×YR×tSCnR