Metamath Proof Explorer


Theorem txcnpi

Description: Continuity of a two-argument function at a point. (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Hypotheses txcnpi.1 φJTopOnX
txcnpi.2 φKTopOnY
txcnpi.3 φFJ×tKCnPLAB
txcnpi.4 φUL
txcnpi.5 φAX
txcnpi.6 φBY
txcnpi.7 φAFBU
Assertion txcnpi φuJvKAuBvu×vF-1U

Proof

Step Hyp Ref Expression
1 txcnpi.1 φJTopOnX
2 txcnpi.2 φKTopOnY
3 txcnpi.3 φFJ×tKCnPLAB
4 txcnpi.4 φUL
5 txcnpi.5 φAX
6 txcnpi.6 φBY
7 txcnpi.7 φAFBU
8 df-ov AFB=FAB
9 8 7 eqeltrrid φFABU
10 cnpimaex FJ×tKCnPLABULFABUwJ×tKABwFwU
11 3 4 9 10 syl3anc φwJ×tKABwFwU
12 eqid J×tK=J×tK
13 eqid L=L
14 12 13 cnpf FJ×tKCnPLABF:J×tKL
15 3 14 syl φF:J×tKL
16 15 adantr φwJ×tKF:J×tKL
17 16 ffund φwJ×tKFunF
18 elssuni wJ×tKwJ×tK
19 15 fdmd φdomF=J×tK
20 19 sseq2d φwdomFwJ×tK
21 20 biimpar φwJ×tKwdomF
22 18 21 sylan2 φwJ×tKwdomF
23 funimass3 FunFwdomFFwUwF-1U
24 17 22 23 syl2anc φwJ×tKFwUwF-1U
25 24 anbi2d φwJ×tKABwFwUABwwF-1U
26 eltx JTopOnXKTopOnYwJ×tKzwuJvKzu×vu×vw
27 1 2 26 syl2anc φwJ×tKzwuJvKzu×vu×vw
28 27 biimpa φwJ×tKzwuJvKzu×vu×vw
29 eleq1 z=ABzu×vABu×v
30 29 anbi1d z=ABzu×vu×vwABu×vu×vw
31 30 2rexbidv z=ABuJvKzu×vu×vwuJvKABu×vu×vw
32 31 rspccv zwuJvKzu×vu×vwABwuJvKABu×vu×vw
33 sstr2 u×vwwF-1Uu×vF-1U
34 33 com12 wF-1Uu×vwu×vF-1U
35 34 anim2d wF-1UAuBvu×vwAuBvu×vF-1U
36 opelxp ABu×vAuBv
37 36 anbi1i ABu×vu×vwAuBvu×vw
38 df-3an AuBvu×vF-1UAuBvu×vF-1U
39 35 37 38 3imtr4g wF-1UABu×vu×vwAuBvu×vF-1U
40 39 reximdv wF-1UvKABu×vu×vwvKAuBvu×vF-1U
41 40 reximdv wF-1UuJvKABu×vu×vwuJvKAuBvu×vF-1U
42 41 com12 uJvKABu×vu×vwwF-1UuJvKAuBvu×vF-1U
43 32 42 syl6 zwuJvKzu×vu×vwABwwF-1UuJvKAuBvu×vF-1U
44 43 impd zwuJvKzu×vu×vwABwwF-1UuJvKAuBvu×vF-1U
45 28 44 syl φwJ×tKABwwF-1UuJvKAuBvu×vF-1U
46 25 45 sylbid φwJ×tKABwFwUuJvKAuBvu×vF-1U
47 46 rexlimdva φwJ×tKABwFwUuJvKAuBvu×vF-1U
48 11 47 mpd φuJvKAuBvu×vF-1U