Metamath Proof Explorer


Theorem tz6.12-afv2

Description: Function value (Theorem 6.12(1) of TakeutiZaring p. 27), analogous to tz6.12 . (Contributed by AV, 5-Sep-2022)

Ref Expression
Assertion tz6.12-afv2 AyF∃!yAyFF''''A=y

Proof

Step Hyp Ref Expression
1 simpl AVAyFAV
2 vex yV
3 2 a1i AVAyFyV
4 df-br AFyAyF
5 4 biimpri AyFAFy
6 5 adantl AVAyFAFy
7 breldmg AVyVAFyAdomF
8 1 3 6 7 syl3anc AVAyFAdomF
9 simpl AdomF∃!yAyFAdomF
10 velsn xAx=A
11 breq1 A=xAFyxFy
12 4 11 bitr3id A=xAyFxFy
13 12 eqcoms x=AAyFxFy
14 13 eubidv x=A∃!yAyF∃!yxFy
15 14 biimpd x=A∃!yAyF∃!yxFy
16 10 15 sylbi xA∃!yAyF∃!yxFy
17 16 com12 ∃!yAyFxA∃!yxFy
18 17 adantl AdomF∃!yAyFxA∃!yxFy
19 18 ralrimiv AdomF∃!yAyFxA∃!yxFy
20 fnres FAFnAxA∃!yxFy
21 fnfun FAFnAFunFA
22 20 21 sylbir xA∃!yxFyFunFA
23 19 22 syl AdomF∃!yAyFFunFA
24 9 23 jca AdomF∃!yAyFAdomFFunFA
25 24 ex AdomF∃!yAyFAdomFFunFA
26 8 25 syl AVAyF∃!yAyFAdomFFunFA
27 26 impr AVAyF∃!yAyFAdomFFunFA
28 df-dfat FdefAtAAdomFFunFA
29 27 28 sylibr AVAyF∃!yAyFFdefAtA
30 dfatafv2iota FdefAtAF''''A=ιy|AFy
31 29 30 syl AVAyF∃!yAyFF''''A=ιy|AFy
32 4 bicomi AyFAFy
33 32 eubii ∃!yAyF∃!yAFy
34 33 biimpi ∃!yAyF∃!yAFy
35 5 34 anim12i AyF∃!yAyFAFy∃!yAFy
36 35 adantl AVAyF∃!yAyFAFy∃!yAFy
37 iota1 ∃!yAFyAFyιy|AFy=y
38 37 biimpac AFy∃!yAFyιy|AFy=y
39 36 38 syl AVAyF∃!yAyFιy|AFy=y
40 31 39 eqtrd AVAyF∃!yAyFF''''A=y
41 40 ex AVAyF∃!yAyFF''''A=y
42 eu2ndop1stv ∃!yAyFAV
43 42 pm2.24d ∃!yAyF¬AVF''''A=y
44 43 adantl AyF∃!yAyF¬AVF''''A=y
45 44 com12 ¬AVAyF∃!yAyFF''''A=y
46 41 45 pm2.61i AyF∃!yAyFF''''A=y