Description: Function value (Theorem 6.12(1) of TakeutiZaring p. 27), analogous to tz6.12 . (Contributed by AV, 5-Sep-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | tz6.12-afv2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | vex | |
|
3 | 2 | a1i | |
4 | df-br | |
|
5 | 4 | biimpri | |
6 | 5 | adantl | |
7 | breldmg | |
|
8 | 1 3 6 7 | syl3anc | |
9 | simpl | |
|
10 | velsn | |
|
11 | breq1 | |
|
12 | 4 11 | bitr3id | |
13 | 12 | eqcoms | |
14 | 13 | eubidv | |
15 | 14 | biimpd | |
16 | 10 15 | sylbi | |
17 | 16 | com12 | |
18 | 17 | adantl | |
19 | 18 | ralrimiv | |
20 | fnres | |
|
21 | fnfun | |
|
22 | 20 21 | sylbir | |
23 | 19 22 | syl | |
24 | 9 23 | jca | |
25 | 24 | ex | |
26 | 8 25 | syl | |
27 | 26 | impr | |
28 | df-dfat | |
|
29 | 27 28 | sylibr | |
30 | dfatafv2iota | |
|
31 | 29 30 | syl | |
32 | 4 | bicomi | |
33 | 32 | eubii | |
34 | 33 | biimpi | |
35 | 5 34 | anim12i | |
36 | 35 | adantl | |
37 | iota1 | |
|
38 | 37 | biimpac | |
39 | 36 38 | syl | |
40 | 31 39 | eqtrd | |
41 | 40 | ex | |
42 | eu2ndop1stv | |
|
43 | 42 | pm2.24d | |
44 | 43 | adantl | |
45 | 44 | com12 | |
46 | 41 45 | pm2.61i | |