Metamath Proof Explorer


Theorem uhgrimedg

Description: An isomorphism between graphs preserves edges, i.e. there is an edge in one graph connecting vertices iff there is an edge in the other graph connecting the corresponding vertices. (Contributed by AV, 25-Oct-2025)

Ref Expression
Hypotheses uhgrimedgi.e E = Edg G
uhgrimedgi.d D = Edg H
Assertion uhgrimedg G UHGraph H UHGraph F G GraphIso H K Vtx G K E F K D

Proof

Step Hyp Ref Expression
1 uhgrimedgi.e E = Edg G
2 uhgrimedgi.d D = Edg H
3 simp1 G UHGraph H UHGraph F G GraphIso H K Vtx G G UHGraph H UHGraph
4 simp2 G UHGraph H UHGraph F G GraphIso H K Vtx G F G GraphIso H
5 4 anim1i G UHGraph H UHGraph F G GraphIso H K Vtx G K E F G GraphIso H K E
6 1 2 uhgrimedgi G UHGraph H UHGraph F G GraphIso H K E F K D
7 3 5 6 syl2an2r G UHGraph H UHGraph F G GraphIso H K Vtx G K E F K D
8 eqid Vtx G = Vtx G
9 eqid Vtx H = Vtx H
10 8 9 grimf1o F G GraphIso H F : Vtx G 1-1 onto Vtx H
11 f1of1 F : Vtx G 1-1 onto Vtx H F : Vtx G 1-1 Vtx H
12 10 11 syl F G GraphIso H F : Vtx G 1-1 Vtx H
13 12 3ad2ant2 G UHGraph H UHGraph F G GraphIso H K Vtx G F : Vtx G 1-1 Vtx H
14 simp3 G UHGraph H UHGraph F G GraphIso H K Vtx G K Vtx G
15 13 14 jca G UHGraph H UHGraph F G GraphIso H K Vtx G F : Vtx G 1-1 Vtx H K Vtx G
16 15 adantr G UHGraph H UHGraph F G GraphIso H K Vtx G F K D F : Vtx G 1-1 Vtx H K Vtx G
17 f1imacnv F : Vtx G 1-1 Vtx H K Vtx G F -1 F K = K
18 16 17 syl G UHGraph H UHGraph F G GraphIso H K Vtx G F K D F -1 F K = K
19 pm3.22 G UHGraph H UHGraph H UHGraph G UHGraph
20 19 3ad2ant1 G UHGraph H UHGraph F G GraphIso H K Vtx G H UHGraph G UHGraph
21 simpl G UHGraph H UHGraph G UHGraph
22 21 anim1i G UHGraph H UHGraph F G GraphIso H G UHGraph F G GraphIso H
23 22 3adant3 G UHGraph H UHGraph F G GraphIso H K Vtx G G UHGraph F G GraphIso H
24 grimcnv G UHGraph F G GraphIso H F -1 H GraphIso G
25 24 imp G UHGraph F G GraphIso H F -1 H GraphIso G
26 23 25 syl G UHGraph H UHGraph F G GraphIso H K Vtx G F -1 H GraphIso G
27 26 anim1i G UHGraph H UHGraph F G GraphIso H K Vtx G F K D F -1 H GraphIso G F K D
28 2 1 uhgrimedgi H UHGraph G UHGraph F -1 H GraphIso G F K D F -1 F K E
29 20 27 28 syl2an2r G UHGraph H UHGraph F G GraphIso H K Vtx G F K D F -1 F K E
30 18 29 eqeltrrd G UHGraph H UHGraph F G GraphIso H K Vtx G F K D K E
31 7 30 impbida G UHGraph H UHGraph F G GraphIso H K Vtx G K E F K D