Description: If S is closed under multiplication, then so is S u. { 0 } . (Contributed by Mario Carneiro, 17-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | un0addcl.1 | |
|
un0addcl.2 | |
||
un0mulcl.3 | |
||
Assertion | un0mulcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | un0addcl.1 | |
|
2 | un0addcl.2 | |
|
3 | un0mulcl.3 | |
|
4 | 2 | eleq2i | |
5 | elun | |
|
6 | 4 5 | bitri | |
7 | 2 | eleq2i | |
8 | elun | |
|
9 | 7 8 | bitri | |
10 | ssun1 | |
|
11 | 10 2 | sseqtrri | |
12 | 11 3 | sselid | |
13 | 12 | expr | |
14 | 1 | sselda | |
15 | 14 | mul02d | |
16 | ssun2 | |
|
17 | 16 2 | sseqtrri | |
18 | c0ex | |
|
19 | 18 | snss | |
20 | 17 19 | mpbir | |
21 | 15 20 | eqeltrdi | |
22 | elsni | |
|
23 | 22 | oveq1d | |
24 | 23 | eleq1d | |
25 | 21 24 | syl5ibrcom | |
26 | 25 | impancom | |
27 | 13 26 | jaodan | |
28 | 9 27 | sylan2b | |
29 | 0cnd | |
|
30 | 29 | snssd | |
31 | 1 30 | unssd | |
32 | 2 31 | eqsstrid | |
33 | 32 | sselda | |
34 | 33 | mul01d | |
35 | 34 20 | eqeltrdi | |
36 | elsni | |
|
37 | 36 | oveq2d | |
38 | 37 | eleq1d | |
39 | 35 38 | syl5ibrcom | |
40 | 28 39 | jaod | |
41 | 6 40 | biimtrid | |
42 | 41 | impr | |