Metamath Proof Explorer


Theorem un0mulcl

Description: If S is closed under multiplication, then so is S u. { 0 } . (Contributed by Mario Carneiro, 17-Jul-2014)

Ref Expression
Hypotheses un0addcl.1 φS
un0addcl.2 T=S0
un0mulcl.3 φMSNS M NS
Assertion un0mulcl φMTNT M NT

Proof

Step Hyp Ref Expression
1 un0addcl.1 φS
2 un0addcl.2 T=S0
3 un0mulcl.3 φMSNS M NS
4 2 eleq2i NTNS0
5 elun NS0NSN0
6 4 5 bitri NTNSN0
7 2 eleq2i MTMS0
8 elun MS0MSM0
9 7 8 bitri MTMSM0
10 ssun1 SS0
11 10 2 sseqtrri ST
12 11 3 sselid φMSNS M NT
13 12 expr φMSNS M NT
14 1 sselda φNSN
15 14 mul02d φNS0 N=0
16 ssun2 0S0
17 16 2 sseqtrri 0T
18 c0ex 0V
19 18 snss 0T0T
20 17 19 mpbir 0T
21 15 20 eqeltrdi φNS0 NT
22 elsni M0M=0
23 22 oveq1d M0 M N=0 N
24 23 eleq1d M0 M NT0 NT
25 21 24 syl5ibrcom φNSM0 M NT
26 25 impancom φM0NS M NT
27 13 26 jaodan φMSM0NS M NT
28 9 27 sylan2b φMTNS M NT
29 0cnd φ0
30 29 snssd φ0
31 1 30 unssd φS0
32 2 31 eqsstrid φT
33 32 sselda φMTM
34 33 mul01d φMT M0=0
35 34 20 eqeltrdi φMT M0T
36 elsni N0N=0
37 36 oveq2d N0 M N= M0
38 37 eleq1d N0 M NT M0T
39 35 38 syl5ibrcom φMTN0 M NT
40 28 39 jaod φMTNSN0 M NT
41 6 40 biimtrid φMTNT M NT
42 41 impr φMTNT M NT