| Step | Hyp | Ref | Expression | 
						
							| 1 |  | un0addcl.1 |  | 
						
							| 2 |  | un0addcl.2 |  | 
						
							| 3 |  | un0mulcl.3 |  | 
						
							| 4 | 2 | eleq2i |  | 
						
							| 5 |  | elun |  | 
						
							| 6 | 4 5 | bitri |  | 
						
							| 7 | 2 | eleq2i |  | 
						
							| 8 |  | elun |  | 
						
							| 9 | 7 8 | bitri |  | 
						
							| 10 |  | ssun1 |  | 
						
							| 11 | 10 2 | sseqtrri |  | 
						
							| 12 | 11 3 | sselid |  | 
						
							| 13 | 12 | expr |  | 
						
							| 14 | 1 | sselda |  | 
						
							| 15 | 14 | mul02d |  | 
						
							| 16 |  | ssun2 |  | 
						
							| 17 | 16 2 | sseqtrri |  | 
						
							| 18 |  | c0ex |  | 
						
							| 19 | 18 | snss |  | 
						
							| 20 | 17 19 | mpbir |  | 
						
							| 21 | 15 20 | eqeltrdi |  | 
						
							| 22 |  | elsni |  | 
						
							| 23 | 22 | oveq1d |  | 
						
							| 24 | 23 | eleq1d |  | 
						
							| 25 | 21 24 | syl5ibrcom |  | 
						
							| 26 | 25 | impancom |  | 
						
							| 27 | 13 26 | jaodan |  | 
						
							| 28 | 9 27 | sylan2b |  | 
						
							| 29 |  | 0cnd |  | 
						
							| 30 | 29 | snssd |  | 
						
							| 31 | 1 30 | unssd |  | 
						
							| 32 | 2 31 | eqsstrid |  | 
						
							| 33 | 32 | sselda |  | 
						
							| 34 | 33 | mul01d |  | 
						
							| 35 | 34 20 | eqeltrdi |  | 
						
							| 36 |  | elsni |  | 
						
							| 37 | 36 | oveq2d |  | 
						
							| 38 | 37 | eleq1d |  | 
						
							| 39 | 35 38 | syl5ibrcom |  | 
						
							| 40 | 28 39 | jaod |  | 
						
							| 41 | 6 40 | biimtrid |  | 
						
							| 42 | 41 | impr |  |