Metamath Proof Explorer


Theorem unbdqndv1

Description: If the difference quotient ( ( ( Fz ) - ( FA ) ) / ( z - A ) ) is unbounded near A then F is not differentiable at A . (Contributed by Asger C. Ipsen, 12-May-2021)

Ref Expression
Hypotheses unbdqndv1.g G = z X A F z F A z A
unbdqndv1.1 φ S
unbdqndv1.2 φ X S
unbdqndv1.3 φ F : X
unbdqndv1.4 φ b + d + x X A x A < d b G x
Assertion unbdqndv1 φ ¬ A dom F S

Proof

Step Hyp Ref Expression
1 unbdqndv1.g G = z X A F z F A z A
2 unbdqndv1.1 φ S
3 unbdqndv1.2 φ X S
4 unbdqndv1.3 φ F : X
5 unbdqndv1.4 φ b + d + x X A x A < d b G x
6 noel ¬ y
7 6 a1i φ A dom F S ¬ y
8 3 2 sstrd φ X
9 8 adantr φ A dom F S X
10 9 ssdifssd φ A dom F S X A
11 4 adantr φ A dom F S F : X
12 2 4 3 dvbss φ dom F S X
13 12 sselda φ A dom F S A X
14 11 9 13 dvlem φ A dom F S z X A F z F A z A
15 14 1 fmptd φ A dom F S G : X A
16 9 13 sseldd φ A dom F S A
17 5 adantr φ A dom F S b + d + x X A x A < d b G x
18 10 15 16 17 unblimceq0 φ A dom F S G lim A =
19 7 18 neleqtrrd φ A dom F S ¬ y G lim A
20 19 intnand φ A dom F S ¬ A int TopOpen fld 𝑡 S X y G lim A
21 eqid TopOpen fld 𝑡 S = TopOpen fld 𝑡 S
22 eqid TopOpen fld = TopOpen fld
23 21 22 1 2 4 3 eldv φ A F S y A int TopOpen fld 𝑡 S X y G lim A
24 23 notbid φ ¬ A F S y ¬ A int TopOpen fld 𝑡 S X y G lim A
25 24 adantr φ A dom F S ¬ A F S y ¬ A int TopOpen fld 𝑡 S X y G lim A
26 20 25 mpbird φ A dom F S ¬ A F S y
27 26 alrimiv φ A dom F S y ¬ A F S y
28 simpr φ A dom F S A dom F S
29 eldmg A dom F S A dom F S y A F S y
30 28 29 syl φ A dom F S A dom F S y A F S y
31 30 notbid φ A dom F S ¬ A dom F S ¬ y A F S y
32 alnex y ¬ A F S y ¬ y A F S y
33 32 a1i φ A dom F S y ¬ A F S y ¬ y A F S y
34 33 bicomd φ A dom F S ¬ y A F S y y ¬ A F S y
35 31 34 bitrd φ A dom F S ¬ A dom F S y ¬ A F S y
36 27 35 mpbird φ A dom F S ¬ A dom F S
37 36 pm2.01da φ ¬ A dom F S