Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002) (Revised by Mario Carneiro, 31-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unfilem1.1 | |
|
unfilem1.2 | |
||
unfilem1.3 | |
||
Assertion | unfilem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unfilem1.1 | |
|
2 | unfilem1.2 | |
|
3 | unfilem1.3 | |
|
4 | elnn | |
|
5 | 2 4 | mpan2 | |
6 | nnaord | |
|
7 | 2 1 6 | mp3an23 | |
8 | 5 7 | syl | |
9 | 8 | ibi | |
10 | nnaword1 | |
|
11 | nnord | |
|
12 | nnacl | |
|
13 | nnord | |
|
14 | 12 13 | syl | |
15 | ordtri1 | |
|
16 | 11 14 15 | syl2an2r | |
17 | 10 16 | mpbid | |
18 | 1 5 17 | sylancr | |
19 | 9 18 | jca | |
20 | eleq1 | |
|
21 | eleq1 | |
|
22 | 21 | notbid | |
23 | 20 22 | anbi12d | |
24 | 23 | biimparc | |
25 | 19 24 | sylan | |
26 | 25 | rexlimiva | |
27 | 1 2 | nnacli | |
28 | elnn | |
|
29 | 27 28 | mpan2 | |
30 | nnord | |
|
31 | ordtri1 | |
|
32 | 11 30 31 | syl2an | |
33 | nnawordex | |
|
34 | 32 33 | bitr3d | |
35 | 1 29 34 | sylancr | |
36 | eleq1 | |
|
37 | 7 36 | sylan9bb | |
38 | 37 | biimprcd | |
39 | eqcom | |
|
40 | 39 | biimpi | |
41 | 40 | adantl | |
42 | 38 41 | jca2 | |
43 | 42 | reximdv2 | |
44 | 35 43 | sylbid | |
45 | 44 | imp | |
46 | 26 45 | impbii | |
47 | ovex | |
|
48 | 3 47 | elrnmpti | |
49 | eldif | |
|
50 | 46 48 49 | 3bitr4i | |
51 | 50 | eqriv | |