Metamath Proof Explorer


Theorem unfilem1

Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypotheses unfilem1.1 Aω
unfilem1.2 Bω
unfilem1.3 F=xBA+𝑜x
Assertion unfilem1 ranF=A+𝑜BA

Proof

Step Hyp Ref Expression
1 unfilem1.1 Aω
2 unfilem1.2 Bω
3 unfilem1.3 F=xBA+𝑜x
4 elnn xBBωxω
5 2 4 mpan2 xBxω
6 nnaord xωBωAωxBA+𝑜xA+𝑜B
7 2 1 6 mp3an23 xωxBA+𝑜xA+𝑜B
8 5 7 syl xBxBA+𝑜xA+𝑜B
9 8 ibi xBA+𝑜xA+𝑜B
10 nnaword1 AωxωAA+𝑜x
11 nnord AωOrdA
12 nnacl AωxωA+𝑜xω
13 nnord A+𝑜xωOrdA+𝑜x
14 12 13 syl AωxωOrdA+𝑜x
15 ordtri1 OrdAOrdA+𝑜xAA+𝑜x¬A+𝑜xA
16 11 14 15 syl2an2r AωxωAA+𝑜x¬A+𝑜xA
17 10 16 mpbid Aωxω¬A+𝑜xA
18 1 5 17 sylancr xB¬A+𝑜xA
19 9 18 jca xBA+𝑜xA+𝑜B¬A+𝑜xA
20 eleq1 y=A+𝑜xyA+𝑜BA+𝑜xA+𝑜B
21 eleq1 y=A+𝑜xyAA+𝑜xA
22 21 notbid y=A+𝑜x¬yA¬A+𝑜xA
23 20 22 anbi12d y=A+𝑜xyA+𝑜B¬yAA+𝑜xA+𝑜B¬A+𝑜xA
24 23 biimparc A+𝑜xA+𝑜B¬A+𝑜xAy=A+𝑜xyA+𝑜B¬yA
25 19 24 sylan xBy=A+𝑜xyA+𝑜B¬yA
26 25 rexlimiva xBy=A+𝑜xyA+𝑜B¬yA
27 1 2 nnacli A+𝑜Bω
28 elnn yA+𝑜BA+𝑜Bωyω
29 27 28 mpan2 yA+𝑜Byω
30 nnord yωOrdy
31 ordtri1 OrdAOrdyAy¬yA
32 11 30 31 syl2an AωyωAy¬yA
33 nnawordex AωyωAyxωA+𝑜x=y
34 32 33 bitr3d Aωyω¬yAxωA+𝑜x=y
35 1 29 34 sylancr yA+𝑜B¬yAxωA+𝑜x=y
36 eleq1 A+𝑜x=yA+𝑜xA+𝑜ByA+𝑜B
37 7 36 sylan9bb xωA+𝑜x=yxByA+𝑜B
38 37 biimprcd yA+𝑜BxωA+𝑜x=yxB
39 eqcom A+𝑜x=yy=A+𝑜x
40 39 biimpi A+𝑜x=yy=A+𝑜x
41 40 adantl xωA+𝑜x=yy=A+𝑜x
42 38 41 jca2 yA+𝑜BxωA+𝑜x=yxBy=A+𝑜x
43 42 reximdv2 yA+𝑜BxωA+𝑜x=yxBy=A+𝑜x
44 35 43 sylbid yA+𝑜B¬yAxBy=A+𝑜x
45 44 imp yA+𝑜B¬yAxBy=A+𝑜x
46 26 45 impbii xBy=A+𝑜xyA+𝑜B¬yA
47 ovex A+𝑜xV
48 3 47 elrnmpti yranFxBy=A+𝑜x
49 eldif yA+𝑜BAyA+𝑜B¬yA
50 46 48 49 3bitr4i yranFyA+𝑜BA
51 50 eqriv ranF=A+𝑜BA