Metamath Proof Explorer


Theorem uniimaelsetpreimafv

Description: The union of the image of an element of the preimage of a function value is an element of the range of the function. (Contributed by AV, 5-Mar-2024) (Revised by AV, 22-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p P = z | x A z = F -1 F x
Assertion uniimaelsetpreimafv F Fn A S P F S ran F

Proof

Step Hyp Ref Expression
1 setpreimafvex.p P = z | x A z = F -1 F x
2 1 0nelsetpreimafv F Fn A P
3 elnelne2 S P P S
4 n0 S y y S
5 3 4 sylib S P P y y S
6 5 expcom P S P y y S
7 2 6 syl F Fn A S P y y S
8 7 imp F Fn A S P y y S
9 1 imaelsetpreimafv F Fn A S P y S F S = F y
10 9 3expa F Fn A S P y S F S = F y
11 10 unieqd F Fn A S P y S F S = F y
12 fvex F y V
13 12 unisn F y = F y
14 11 13 syl6eq F Fn A S P y S F S = F y
15 dffn3 F Fn A F : A ran F
16 15 biimpi F Fn A F : A ran F
17 16 ad2antrr F Fn A S P y S F : A ran F
18 1 elsetpreimafvssdm F Fn A S P S A
19 18 sselda F Fn A S P y S y A
20 17 19 ffvelrnd F Fn A S P y S F y ran F
21 14 20 eqeltrd F Fn A S P y S F S ran F
22 8 21 exlimddv F Fn A S P F S ran F