Metamath Proof Explorer


Theorem uniimaelsetpreimafv

Description: The union of the image of an element of the preimage of a function value is an element of the range of the function. (Contributed by AV, 5-Mar-2024) (Revised by AV, 22-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p P=z|xAz=F-1Fx
Assertion uniimaelsetpreimafv FFnASPFSranF

Proof

Step Hyp Ref Expression
1 setpreimafvex.p P=z|xAz=F-1Fx
2 1 0nelsetpreimafv FFnAP
3 elnelne2 SPPS
4 n0 SyyS
5 3 4 sylib SPPyyS
6 5 expcom PSPyyS
7 2 6 syl FFnASPyyS
8 7 imp FFnASPyyS
9 1 imaelsetpreimafv FFnASPySFS=Fy
10 9 3expa FFnASPySFS=Fy
11 10 unieqd FFnASPySFS=Fy
12 fvex FyV
13 12 unisn Fy=Fy
14 11 13 eqtrdi FFnASPySFS=Fy
15 dffn3 FFnAF:AranF
16 15 biimpi FFnAF:AranF
17 16 ad2antrr FFnASPySF:AranF
18 1 elsetpreimafvssdm FFnASPSA
19 18 sselda FFnASPySyA
20 17 19 ffvelcdmd FFnASPySFyranF
21 14 20 eqeltrd FFnASPySFSranF
22 8 21 exlimddv FFnASPFSranF