Metamath Proof Explorer


Theorem unirnmap

Description: Given a subset of a set exponentiation, the base set can be restricted. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses unirnmap.a φAV
unirnmap.x φXBA
Assertion unirnmap φXranXA

Proof

Step Hyp Ref Expression
1 unirnmap.a φAV
2 unirnmap.x φXBA
3 2 sselda φgXgBA
4 elmapfn gBAgFnA
5 3 4 syl φgXgFnA
6 simplr φgXxAgX
7 dffn3 gFnAg:Arang
8 5 7 sylib φgXg:Arang
9 8 ffvelcdmda φgXxAgxrang
10 rneq f=granf=rang
11 10 eleq2d f=ggxranfgxrang
12 11 rspcev gXgxrangfXgxranf
13 6 9 12 syl2anc φgXxAfXgxranf
14 eliun gxfXranffXgxranf
15 13 14 sylibr φgXxAgxfXranf
16 rnuni ranX=fXranf
17 15 16 eleqtrrdi φgXxAgxranX
18 17 ralrimiva φgXxAgxranX
19 5 18 jca φgXgFnAxAgxranX
20 ffnfv g:AranXgFnAxAgxranX
21 19 20 sylibr φgXg:AranX
22 ovexd φBAV
23 22 2 ssexd φXV
24 23 uniexd φXV
25 rnexg XVranXV
26 24 25 syl φranXV
27 26 1 elmapd φgranXAg:AranX
28 27 adantr φgXgranXAg:AranX
29 21 28 mpbird φgXgranXA
30 29 ralrimiva φgXgranXA
31 dfss3 XranXAgXgranXA
32 30 31 sylibr φXranXA