Description: Given a subset of a set exponentiation, the base set can be restricted. (Contributed by Glauco Siliprandi, 3-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unirnmap.a | |
|
unirnmap.x | |
||
Assertion | unirnmap | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unirnmap.a | |
|
2 | unirnmap.x | |
|
3 | 2 | sselda | |
4 | elmapfn | |
|
5 | 3 4 | syl | |
6 | simplr | |
|
7 | dffn3 | |
|
8 | 5 7 | sylib | |
9 | 8 | ffvelcdmda | |
10 | rneq | |
|
11 | 10 | eleq2d | |
12 | 11 | rspcev | |
13 | 6 9 12 | syl2anc | |
14 | eliun | |
|
15 | 13 14 | sylibr | |
16 | rnuni | |
|
17 | 15 16 | eleqtrrdi | |
18 | 17 | ralrimiva | |
19 | 5 18 | jca | |
20 | ffnfv | |
|
21 | 19 20 | sylibr | |
22 | ovexd | |
|
23 | 22 2 | ssexd | |
24 | 23 | uniexd | |
25 | rnexg | |
|
26 | 24 25 | syl | |
27 | 26 1 | elmapd | |
28 | 27 | adantr | |
29 | 21 28 | mpbird | |
30 | 29 | ralrimiva | |
31 | dfss3 | |
|
32 | 30 31 | sylibr | |