Metamath Proof Explorer


Theorem uobeqw

Description: If a full functor (in fact, a full embedding) is a section of a fully faithful functor (surjective on objects), then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses uobeq.b B = Base D
uobeq.i I = id func D
uobeq.x φ X B
uobeq.f φ F C Func D
uobeq.k φ K D Full E
uobeq.g φ K func F = G
uobeq.y φ 1 st K X = Y
uobeq.n φ L func K = I
uobeqw.l φ L E Full D E Faith D
Assertion uobeqw Could not format assertion : No typesetting found for |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 uobeq.b B = Base D
2 uobeq.i I = id func D
3 uobeq.x φ X B
4 uobeq.f φ F C Func D
5 uobeq.k φ K D Full E
6 uobeq.g φ K func F = G
7 uobeq.y φ 1 st K X = Y
8 uobeq.n φ L func K = I
9 uobeqw.l φ L E Full D E Faith D
10 19.42v Could not format ( E. m ( ph /\ z ( F ( C UP D ) X ) m ) <-> ( ph /\ E. m z ( F ( C UP D ) X ) m ) ) : No typesetting found for |- ( E. m ( ph /\ z ( F ( C UP D ) X ) m ) <-> ( ph /\ E. m z ( F ( C UP D ) X ) m ) ) with typecode |-
11 fvexd Could not format ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) e. _V ) : No typesetting found for |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) e. _V ) with typecode |-
12 7 adantr Could not format ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( ( 1st ` K ) ` X ) = Y ) : No typesetting found for |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( ( 1st ` K ) ` X ) = Y ) with typecode |-
13 relfunc Rel D Func E
14 fullfunc D Full E D Func E
15 14 5 sselid φ K D Func E
16 1st2nd Rel D Func E K D Func E K = 1 st K 2 nd K
17 13 15 16 sylancr φ K = 1 st K 2 nd K
18 15 func1st2nd φ 1 st K D Func E 2 nd K
19 inss1 E Full D E Faith D E Full D
20 fullfunc E Full D E Func D
21 19 20 sstri E Full D E Faith D E Func D
22 21 9 sselid φ L E Func D
23 22 func1st2nd φ 1 st L E Func D 2 nd L
24 15 22 cofu1st2nd φ L func K = 1 st L 2 nd L func 1 st K 2 nd K
25 24 8 eqtr3d φ 1 st L 2 nd L func 1 st K 2 nd K = I
26 2 18 23 25 cofidfth φ 1 st K D Faith E 2 nd K
27 df-br 1 st K D Faith E 2 nd K 1 st K 2 nd K D Faith E
28 26 27 sylib φ 1 st K 2 nd K D Faith E
29 17 28 eqeltrd φ K D Faith E
30 5 29 elind φ K D Full E D Faith E
31 30 adantr Could not format ( ( ph /\ z ( F ( C UP D ) X ) m ) -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) : No typesetting found for |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) with typecode |-
32 6 adantr Could not format ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( K o.func F ) = G ) : No typesetting found for |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( K o.func F ) = G ) with typecode |-
33 eqidd Could not format ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) = ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) ) : No typesetting found for |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) = ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) ) with typecode |-
34 simpr Could not format ( ( ph /\ z ( F ( C UP D ) X ) m ) -> z ( F ( C UP D ) X ) m ) : No typesetting found for |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> z ( F ( C UP D ) X ) m ) with typecode |-
35 12 31 32 33 34 uptrai Could not format ( ( ph /\ z ( F ( C UP D ) X ) m ) -> z ( G ( C UP E ) Y ) ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) ) : No typesetting found for |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> z ( G ( C UP E ) Y ) ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) ) with typecode |-
36 breq2 Could not format ( n = ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) -> ( z ( G ( C UP E ) Y ) n <-> z ( G ( C UP E ) Y ) ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) ) ) : No typesetting found for |- ( n = ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) -> ( z ( G ( C UP E ) Y ) n <-> z ( G ( C UP E ) Y ) ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) ) ) with typecode |-
37 11 35 36 spcedv Could not format ( ( ph /\ z ( F ( C UP D ) X ) m ) -> E. n z ( G ( C UP E ) Y ) n ) : No typesetting found for |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> E. n z ( G ( C UP E ) Y ) n ) with typecode |-
38 37 exlimiv Could not format ( E. m ( ph /\ z ( F ( C UP D ) X ) m ) -> E. n z ( G ( C UP E ) Y ) n ) : No typesetting found for |- ( E. m ( ph /\ z ( F ( C UP D ) X ) m ) -> E. n z ( G ( C UP E ) Y ) n ) with typecode |-
39 10 38 sylbir Could not format ( ( ph /\ E. m z ( F ( C UP D ) X ) m ) -> E. n z ( G ( C UP E ) Y ) n ) : No typesetting found for |- ( ( ph /\ E. m z ( F ( C UP D ) X ) m ) -> E. n z ( G ( C UP E ) Y ) n ) with typecode |-
40 19.42v Could not format ( E. n ( ph /\ z ( G ( C UP E ) Y ) n ) <-> ( ph /\ E. n z ( G ( C UP E ) Y ) n ) ) : No typesetting found for |- ( E. n ( ph /\ z ( G ( C UP E ) Y ) n ) <-> ( ph /\ E. n z ( G ( C UP E ) Y ) n ) ) with typecode |-
41 fvexd Could not format ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( ( Y ( 2nd ` L ) ( ( 1st ` G ) ` z ) ) ` n ) e. _V ) : No typesetting found for |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( ( Y ( 2nd ` L ) ( ( 1st ` G ) ` z ) ) ` n ) e. _V ) with typecode |-
42 7 fveq2d φ 1 st L 1 st K X = 1 st L Y
43 2 1 3 15 22 8 cofid1a φ 1 st L 1 st K X = X
44 42 43 eqtr3d φ 1 st L Y = X
45 44 adantr Could not format ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( ( 1st ` L ) ` Y ) = X ) : No typesetting found for |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( ( 1st ` L ) ` Y ) = X ) with typecode |-
46 9 adantr Could not format ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> L e. ( ( E Full D ) i^i ( E Faith D ) ) ) : No typesetting found for |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> L e. ( ( E Full D ) i^i ( E Faith D ) ) ) with typecode |-
47 4 15 22 cofuass φ L func K func F = L func K func F
48 8 oveq1d φ L func K func F = I func F
49 4 2 cofulid φ I func F = F
50 48 49 eqtrd φ L func K func F = F
51 6 oveq2d φ L func K func F = L func G
52 47 50 51 3eqtr3rd φ L func G = F
53 52 adantr Could not format ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( L o.func G ) = F ) : No typesetting found for |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( L o.func G ) = F ) with typecode |-
54 eqidd Could not format ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( ( Y ( 2nd ` L ) ( ( 1st ` G ) ` z ) ) ` n ) = ( ( Y ( 2nd ` L ) ( ( 1st ` G ) ` z ) ) ` n ) ) : No typesetting found for |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( ( Y ( 2nd ` L ) ( ( 1st ` G ) ` z ) ) ` n ) = ( ( Y ( 2nd ` L ) ( ( 1st ` G ) ` z ) ) ` n ) ) with typecode |-
55 simpr Could not format ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> z ( G ( C UP E ) Y ) n ) : No typesetting found for |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> z ( G ( C UP E ) Y ) n ) with typecode |-
56 45 46 53 54 55 uptrai Could not format ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> z ( F ( C UP D ) X ) ( ( Y ( 2nd ` L ) ( ( 1st ` G ) ` z ) ) ` n ) ) : No typesetting found for |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> z ( F ( C UP D ) X ) ( ( Y ( 2nd ` L ) ( ( 1st ` G ) ` z ) ) ` n ) ) with typecode |-
57 breq2 Could not format ( m = ( ( Y ( 2nd ` L ) ( ( 1st ` G ) ` z ) ) ` n ) -> ( z ( F ( C UP D ) X ) m <-> z ( F ( C UP D ) X ) ( ( Y ( 2nd ` L ) ( ( 1st ` G ) ` z ) ) ` n ) ) ) : No typesetting found for |- ( m = ( ( Y ( 2nd ` L ) ( ( 1st ` G ) ` z ) ) ` n ) -> ( z ( F ( C UP D ) X ) m <-> z ( F ( C UP D ) X ) ( ( Y ( 2nd ` L ) ( ( 1st ` G ) ` z ) ) ` n ) ) ) with typecode |-
58 41 56 57 spcedv Could not format ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> E. m z ( F ( C UP D ) X ) m ) : No typesetting found for |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> E. m z ( F ( C UP D ) X ) m ) with typecode |-
59 58 exlimiv Could not format ( E. n ( ph /\ z ( G ( C UP E ) Y ) n ) -> E. m z ( F ( C UP D ) X ) m ) : No typesetting found for |- ( E. n ( ph /\ z ( G ( C UP E ) Y ) n ) -> E. m z ( F ( C UP D ) X ) m ) with typecode |-
60 40 59 sylbir Could not format ( ( ph /\ E. n z ( G ( C UP E ) Y ) n ) -> E. m z ( F ( C UP D ) X ) m ) : No typesetting found for |- ( ( ph /\ E. n z ( G ( C UP E ) Y ) n ) -> E. m z ( F ( C UP D ) X ) m ) with typecode |-
61 39 60 impbida Could not format ( ph -> ( E. m z ( F ( C UP D ) X ) m <-> E. n z ( G ( C UP E ) Y ) n ) ) : No typesetting found for |- ( ph -> ( E. m z ( F ( C UP D ) X ) m <-> E. n z ( G ( C UP E ) Y ) n ) ) with typecode |-
62 relup Could not format Rel ( F ( C UP D ) X ) : No typesetting found for |- Rel ( F ( C UP D ) X ) with typecode |-
63 releldmb Could not format ( Rel ( F ( C UP D ) X ) -> ( z e. dom ( F ( C UP D ) X ) <-> E. m z ( F ( C UP D ) X ) m ) ) : No typesetting found for |- ( Rel ( F ( C UP D ) X ) -> ( z e. dom ( F ( C UP D ) X ) <-> E. m z ( F ( C UP D ) X ) m ) ) with typecode |-
64 62 63 ax-mp Could not format ( z e. dom ( F ( C UP D ) X ) <-> E. m z ( F ( C UP D ) X ) m ) : No typesetting found for |- ( z e. dom ( F ( C UP D ) X ) <-> E. m z ( F ( C UP D ) X ) m ) with typecode |-
65 relup Could not format Rel ( G ( C UP E ) Y ) : No typesetting found for |- Rel ( G ( C UP E ) Y ) with typecode |-
66 releldmb Could not format ( Rel ( G ( C UP E ) Y ) -> ( z e. dom ( G ( C UP E ) Y ) <-> E. n z ( G ( C UP E ) Y ) n ) ) : No typesetting found for |- ( Rel ( G ( C UP E ) Y ) -> ( z e. dom ( G ( C UP E ) Y ) <-> E. n z ( G ( C UP E ) Y ) n ) ) with typecode |-
67 65 66 ax-mp Could not format ( z e. dom ( G ( C UP E ) Y ) <-> E. n z ( G ( C UP E ) Y ) n ) : No typesetting found for |- ( z e. dom ( G ( C UP E ) Y ) <-> E. n z ( G ( C UP E ) Y ) n ) with typecode |-
68 61 64 67 3bitr4g Could not format ( ph -> ( z e. dom ( F ( C UP D ) X ) <-> z e. dom ( G ( C UP E ) Y ) ) ) : No typesetting found for |- ( ph -> ( z e. dom ( F ( C UP D ) X ) <-> z e. dom ( G ( C UP E ) Y ) ) ) with typecode |-
69 68 eqrdv Could not format ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) : No typesetting found for |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) with typecode |-