Metamath Proof Explorer


Theorem upbdrech2

Description: Choice of an upper bound for a possibly empty bunded set (image set version). (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses upbdrech2.b φxAB
upbdrech2.bd φyxABy
upbdrech2.c C=ifA=0supz|xAz=B<
Assertion upbdrech2 φCxABC

Proof

Step Hyp Ref Expression
1 upbdrech2.b φxAB
2 upbdrech2.bd φyxABy
3 upbdrech2.c C=ifA=0supz|xAz=B<
4 iftrue A=ifA=0supz|xAz=B<=0
5 0red A=0
6 4 5 eqeltrd A=ifA=0supz|xAz=B<
7 6 adantl φA=ifA=0supz|xAz=B<
8 simpr φ¬A=¬A=
9 8 iffalsed φ¬A=ifA=0supz|xAz=B<=supz|xAz=B<
10 8 neqned φ¬A=A
11 1 adantlr φ¬A=xAB
12 2 adantr φ¬A=yxABy
13 eqid supz|xAz=B<=supz|xAz=B<
14 10 11 12 13 upbdrech φ¬A=supz|xAz=B<xABsupz|xAz=B<
15 14 simpld φ¬A=supz|xAz=B<
16 9 15 eqeltrd φ¬A=ifA=0supz|xAz=B<
17 7 16 pm2.61dan φifA=0supz|xAz=B<
18 3 17 eqeltrid φC
19 rzal A=xABC
20 19 adantl φA=xABC
21 14 simprd φ¬A=xABsupz|xAz=B<
22 iffalse ¬A=ifA=0supz|xAz=B<=supz|xAz=B<
23 3 22 eqtrid ¬A=C=supz|xAz=B<
24 23 breq2d ¬A=BCBsupz|xAz=B<
25 24 ralbidv ¬A=xABCxABsupz|xAz=B<
26 25 adantl φ¬A=xABCxABsupz|xAz=B<
27 21 26 mpbird φ¬A=xABC
28 20 27 pm2.61dan φxABC
29 18 28 jca φCxABC