Metamath Proof Explorer


Theorem updjudhcoinrg

Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the right injection equals the second function. (Contributed by AV, 27-Jun-2022)

Ref Expression
Hypotheses updjud.f φF:AC
updjud.g φG:BC
updjudhf.h H=xA⊔︀Bif1stx=F2ndxG2ndx
Assertion updjudhcoinrg φHinrB=G

Proof

Step Hyp Ref Expression
1 updjud.f φF:AC
2 updjud.g φG:BC
3 updjudhf.h H=xA⊔︀Bif1stx=F2ndxG2ndx
4 1 2 3 updjudhf φH:A⊔︀BC
5 4 ffnd φHFnA⊔︀B
6 inrresf inrB:BA⊔︀B
7 ffn inrB:BA⊔︀BinrBFnB
8 6 7 mp1i φinrBFnB
9 frn inrB:BA⊔︀BraninrBA⊔︀B
10 6 9 mp1i φraninrBA⊔︀B
11 fnco HFnA⊔︀BinrBFnBraninrBA⊔︀BHinrBFnB
12 5 8 10 11 syl3anc φHinrBFnB
13 2 ffnd φGFnB
14 fvco2 inrBFnBbBHinrBb=HinrBb
15 8 14 sylan φbBHinrBb=HinrBb
16 fvres bBinrBb=inrb
17 16 adantl φbBinrBb=inrb
18 17 fveq2d φbBHinrBb=Hinrb
19 fveqeq2 x=inrb1stx=1stinrb=
20 2fveq3 x=inrbF2ndx=F2ndinrb
21 2fveq3 x=inrbG2ndx=G2ndinrb
22 19 20 21 ifbieq12d x=inrbif1stx=F2ndxG2ndx=if1stinrb=F2ndinrbG2ndinrb
23 22 adantl φbBx=inrbif1stx=F2ndxG2ndx=if1stinrb=F2ndinrbG2ndinrb
24 1stinr bB1stinrb=1𝑜
25 1n0 1𝑜
26 25 neii ¬1𝑜=
27 eqeq1 1stinrb=1𝑜1stinrb=1𝑜=
28 26 27 mtbiri 1stinrb=1𝑜¬1stinrb=
29 24 28 syl bB¬1stinrb=
30 29 adantl φbB¬1stinrb=
31 30 adantr φbBx=inrb¬1stinrb=
32 31 iffalsed φbBx=inrbif1stinrb=F2ndinrbG2ndinrb=G2ndinrb
33 23 32 eqtrd φbBx=inrbif1stx=F2ndxG2ndx=G2ndinrb
34 djurcl bBinrbA⊔︀B
35 34 adantl φbBinrbA⊔︀B
36 2 adantr φbBG:BC
37 2ndinr bB2ndinrb=b
38 37 adantl φbB2ndinrb=b
39 simpr φbBbB
40 38 39 eqeltrd φbB2ndinrbB
41 36 40 ffvelcdmd φbBG2ndinrbC
42 3 33 35 41 fvmptd2 φbBHinrb=G2ndinrb
43 18 42 eqtrd φbBHinrBb=G2ndinrb
44 38 fveq2d φbBG2ndinrb=Gb
45 15 43 44 3eqtrd φbBHinrBb=Gb
46 12 13 45 eqfnfvd φHinrB=G