Metamath Proof Explorer


Theorem uptrlem1

Description: Lemma for uptr . (Contributed by Zhi Wang, 16-Nov-2025)

Ref Expression
Hypotheses uptrlem1.h H = Hom C
uptrlem1.i I = Hom D
uptrlem1.j J = Hom E
uptrlem1.d ˙ = comp D
uptrlem1.e No typesetting found for |- .o. = ( comp ` E ) with typecode |-
uptrlem1.x φ X Base D
uptrlem1.y φ M X = Y
uptrlem1.z φ Z Base C
uptrlem1.w φ W Base C
uptrlem1.a φ A X I F Z
uptrlem1.b φ X N F Z A = B
uptrlem1.f φ F C Func D G
uptrlem1.m φ M D Full E D Faith E N
uptrlem1.k φ M N func F G = K L
Assertion uptrlem1 Could not format assertion : No typesetting found for |- ( ph -> ( A. h e. ( Y J ( K ` W ) ) E! k e. ( Z H W ) h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> A. g e. ( X I ( F ` W ) ) E! k e. ( Z H W ) g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 uptrlem1.h H = Hom C
2 uptrlem1.i I = Hom D
3 uptrlem1.j J = Hom E
4 uptrlem1.d ˙ = comp D
5 uptrlem1.e Could not format .o. = ( comp ` E ) : No typesetting found for |- .o. = ( comp ` E ) with typecode |-
6 uptrlem1.x φ X Base D
7 uptrlem1.y φ M X = Y
8 uptrlem1.z φ Z Base C
9 uptrlem1.w φ W Base C
10 uptrlem1.a φ A X I F Z
11 uptrlem1.b φ X N F Z A = B
12 uptrlem1.f φ F C Func D G
13 uptrlem1.m φ M D Full E D Faith E N
14 uptrlem1.k φ M N func F G = K L
15 eqid Base D = Base D
16 eqid Base C = Base C
17 16 15 12 funcf1 φ F : Base C Base D
18 17 9 ffvelcdmd φ F W Base D
19 15 2 3 13 6 18 ffthf1o φ X N F W : X I F W 1-1 onto M X J M F W
20 inss1 D Full E D Faith E D Full E
21 fullfunc D Full E D Func E
22 20 21 sstri D Full E D Faith E D Func E
23 22 ssbri M D Full E D Faith E N M D Func E N
24 13 23 syl φ M D Func E N
25 16 12 24 14 9 cofu1a φ M F W = K W
26 7 25 oveq12d φ M X J M F W = Y J K W
27 26 f1oeq3d φ X N F W : X I F W 1-1 onto M X J M F W X N F W : X I F W 1-1 onto Y J K W
28 19 27 mpbid φ X N F W : X I F W 1-1 onto Y J K W
29 f1of X N F W : X I F W 1-1 onto Y J K W X N F W : X I F W Y J K W
30 28 29 syl φ X N F W : X I F W Y J K W
31 30 ffvelcdmda φ g X I F W X N F W g Y J K W
32 f1ofo X N F W : X I F W 1-1 onto Y J K W X N F W : X I F W onto Y J K W
33 28 32 syl φ X N F W : X I F W onto Y J K W
34 foelrn X N F W : X I F W onto Y J K W h Y J K W g X I F W h = X N F W g
35 33 34 sylan φ h Y J K W g X I F W h = X N F W g
36 simpl3 φ g X I F W h = X N F W g k Z H W h = X N F W g
37 36 eqeq1d Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) /\ k e. ( Z H W ) ) -> ( h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) /\ k e. ( Z H W ) ) -> ( h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) ) with typecode |-
38 24 ad2antrr φ g X I F W k Z H W M D Func E N
39 6 ad2antrr φ g X I F W k Z H W X Base D
40 17 8 ffvelcdmd φ F Z Base D
41 40 ad2antrr φ g X I F W k Z H W F Z Base D
42 18 ad2antrr φ g X I F W k Z H W F W Base D
43 10 ad2antrr φ g X I F W k Z H W A X I F Z
44 16 1 2 12 8 9 funcf2 φ Z G W : Z H W F Z I F W
45 44 adantr φ g X I F W Z G W : Z H W F Z I F W
46 45 ffvelcdmda φ g X I F W k Z H W Z G W k F Z I F W
47 15 2 4 5 38 39 41 42 43 46 funcco Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( X N ( F ` W ) ) ` ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) = ( ( ( ( F ` Z ) N ( F ` W ) ) ` ( ( Z G W ) ` k ) ) ( <. ( M ` X ) , ( M ` ( F ` Z ) ) >. .o. ( M ` ( F ` W ) ) ) ( ( X N ( F ` Z ) ) ` A ) ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( X N ( F ` W ) ) ` ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) = ( ( ( ( F ` Z ) N ( F ` W ) ) ` ( ( Z G W ) ` k ) ) ( <. ( M ` X ) , ( M ` ( F ` Z ) ) >. .o. ( M ` ( F ` W ) ) ) ( ( X N ( F ` Z ) ) ` A ) ) ) with typecode |-
48 7 ad2antrr φ g X I F W k Z H W M X = Y
49 16 12 24 14 8 cofu1a φ M F Z = K Z
50 49 ad2antrr φ g X I F W k Z H W M F Z = K Z
51 48 50 opeq12d φ g X I F W k Z H W M X M F Z = Y K Z
52 25 ad2antrr φ g X I F W k Z H W M F W = K W
53 51 52 oveq12d Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( <. ( M ` X ) , ( M ` ( F ` Z ) ) >. .o. ( M ` ( F ` W ) ) ) = ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( <. ( M ` X ) , ( M ` ( F ` Z ) ) >. .o. ( M ` ( F ` W ) ) ) = ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) ) with typecode |-
54 12 ad2antrr φ g X I F W k Z H W F C Func D G
55 14 ad2antrr φ g X I F W k Z H W M N func F G = K L
56 8 ad2antrr φ g X I F W k Z H W Z Base C
57 9 ad2antrr φ g X I F W k Z H W W Base C
58 simpr φ g X I F W k Z H W k Z H W
59 16 54 38 55 56 57 1 58 cofu2a φ g X I F W k Z H W F Z N F W Z G W k = Z L W k
60 11 ad2antrr φ g X I F W k Z H W X N F Z A = B
61 53 59 60 oveq123d Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( ( ( F ` Z ) N ( F ` W ) ) ` ( ( Z G W ) ` k ) ) ( <. ( M ` X ) , ( M ` ( F ` Z ) ) >. .o. ( M ` ( F ` W ) ) ) ( ( X N ( F ` Z ) ) ` A ) ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( ( ( F ` Z ) N ( F ` W ) ) ` ( ( Z G W ) ` k ) ) ( <. ( M ` X ) , ( M ` ( F ` Z ) ) >. .o. ( M ` ( F ` W ) ) ) ( ( X N ( F ` Z ) ) ` A ) ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) with typecode |-
62 47 61 eqtrd Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( X N ( F ` W ) ) ` ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( X N ( F ` W ) ) ` ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) with typecode |-
63 62 eqeq2d Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( ( X N ( F ` W ) ) ` g ) = ( ( X N ( F ` W ) ) ` ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) <-> ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( ( X N ( F ` W ) ) ` g ) = ( ( X N ( F ` W ) ) ` ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) <-> ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) ) with typecode |-
64 f1of1 X N F W : X I F W 1-1 onto Y J K W X N F W : X I F W 1-1 Y J K W
65 28 64 syl φ X N F W : X I F W 1-1 Y J K W
66 65 ad2antrr φ g X I F W k Z H W X N F W : X I F W 1-1 Y J K W
67 simplr φ g X I F W k Z H W g X I F W
68 38 funcrcl2 φ g X I F W k Z H W D Cat
69 15 2 4 68 39 41 42 43 46 catcocl φ g X I F W k Z H W Z G W k X F Z ˙ F W A X I F W
70 f1fveq X N F W : X I F W 1-1 Y J K W g X I F W Z G W k X F Z ˙ F W A X I F W X N F W g = X N F W Z G W k X F Z ˙ F W A g = Z G W k X F Z ˙ F W A
71 66 67 69 70 syl12anc φ g X I F W k Z H W X N F W g = X N F W Z G W k X F Z ˙ F W A g = Z G W k X F Z ˙ F W A
72 63 71 bitr3d Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) with typecode |-
73 72 3adantl3 Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) /\ k e. ( Z H W ) ) -> ( ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) /\ k e. ( Z H W ) ) -> ( ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) with typecode |-
74 37 73 bitrd Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) /\ k e. ( Z H W ) ) -> ( h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) /\ k e. ( Z H W ) ) -> ( h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) with typecode |-
75 74 reubidva Could not format ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) -> ( E! k e. ( Z H W ) h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> E! k e. ( Z H W ) g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) : No typesetting found for |- ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) -> ( E! k e. ( Z H W ) h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> E! k e. ( Z H W ) g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) with typecode |-
76 31 35 75 ralxfrd2 Could not format ( ph -> ( A. h e. ( Y J ( K ` W ) ) E! k e. ( Z H W ) h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> A. g e. ( X I ( F ` W ) ) E! k e. ( Z H W ) g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) : No typesetting found for |- ( ph -> ( A. h e. ( Y J ( K ` W ) ) E! k e. ( Z H W ) h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> A. g e. ( X I ( F ` W ) ) E! k e. ( Z H W ) g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) with typecode |-