| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uptrlem1.h |
|
| 2 |
|
uptrlem1.i |
|
| 3 |
|
uptrlem1.j |
|
| 4 |
|
uptrlem1.d |
|
| 5 |
|
uptrlem1.e |
Could not format .o. = ( comp ` E ) : No typesetting found for |- .o. = ( comp ` E ) with typecode |- |
| 6 |
|
uptrlem1.x |
|
| 7 |
|
uptrlem1.y |
|
| 8 |
|
uptrlem1.z |
|
| 9 |
|
uptrlem1.w |
|
| 10 |
|
uptrlem1.a |
|
| 11 |
|
uptrlem1.b |
|
| 12 |
|
uptrlem1.f |
|
| 13 |
|
uptrlem1.m |
|
| 14 |
|
uptrlem1.k |
|
| 15 |
|
eqid |
|
| 16 |
|
eqid |
|
| 17 |
16 15 12
|
funcf1 |
|
| 18 |
17 9
|
ffvelcdmd |
|
| 19 |
15 2 3 13 6 18
|
ffthf1o |
|
| 20 |
|
inss1 |
|
| 21 |
|
fullfunc |
|
| 22 |
20 21
|
sstri |
|
| 23 |
22
|
ssbri |
|
| 24 |
13 23
|
syl |
|
| 25 |
16 12 24 14 9
|
cofu1a |
|
| 26 |
7 25
|
oveq12d |
|
| 27 |
26
|
f1oeq3d |
|
| 28 |
19 27
|
mpbid |
|
| 29 |
|
f1of |
|
| 30 |
28 29
|
syl |
|
| 31 |
30
|
ffvelcdmda |
|
| 32 |
|
f1ofo |
|
| 33 |
28 32
|
syl |
|
| 34 |
|
foelrn |
|
| 35 |
33 34
|
sylan |
|
| 36 |
|
simpl3 |
|
| 37 |
36
|
eqeq1d |
Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) /\ k e. ( Z H W ) ) -> ( h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) /\ k e. ( Z H W ) ) -> ( h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) ) with typecode |- |
| 38 |
24
|
ad2antrr |
|
| 39 |
6
|
ad2antrr |
|
| 40 |
17 8
|
ffvelcdmd |
|
| 41 |
40
|
ad2antrr |
|
| 42 |
18
|
ad2antrr |
|
| 43 |
10
|
ad2antrr |
|
| 44 |
16 1 2 12 8 9
|
funcf2 |
|
| 45 |
44
|
adantr |
|
| 46 |
45
|
ffvelcdmda |
|
| 47 |
15 2 4 5 38 39 41 42 43 46
|
funcco |
Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( X N ( F ` W ) ) ` ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) = ( ( ( ( F ` Z ) N ( F ` W ) ) ` ( ( Z G W ) ` k ) ) ( <. ( M ` X ) , ( M ` ( F ` Z ) ) >. .o. ( M ` ( F ` W ) ) ) ( ( X N ( F ` Z ) ) ` A ) ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( X N ( F ` W ) ) ` ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) = ( ( ( ( F ` Z ) N ( F ` W ) ) ` ( ( Z G W ) ` k ) ) ( <. ( M ` X ) , ( M ` ( F ` Z ) ) >. .o. ( M ` ( F ` W ) ) ) ( ( X N ( F ` Z ) ) ` A ) ) ) with typecode |- |
| 48 |
7
|
ad2antrr |
|
| 49 |
16 12 24 14 8
|
cofu1a |
|
| 50 |
49
|
ad2antrr |
|
| 51 |
48 50
|
opeq12d |
|
| 52 |
25
|
ad2antrr |
|
| 53 |
51 52
|
oveq12d |
Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( <. ( M ` X ) , ( M ` ( F ` Z ) ) >. .o. ( M ` ( F ` W ) ) ) = ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( <. ( M ` X ) , ( M ` ( F ` Z ) ) >. .o. ( M ` ( F ` W ) ) ) = ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) ) with typecode |- |
| 54 |
12
|
ad2antrr |
|
| 55 |
14
|
ad2antrr |
|
| 56 |
8
|
ad2antrr |
|
| 57 |
9
|
ad2antrr |
|
| 58 |
|
simpr |
|
| 59 |
16 54 38 55 56 57 1 58
|
cofu2a |
|
| 60 |
11
|
ad2antrr |
|
| 61 |
53 59 60
|
oveq123d |
Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( ( ( F ` Z ) N ( F ` W ) ) ` ( ( Z G W ) ` k ) ) ( <. ( M ` X ) , ( M ` ( F ` Z ) ) >. .o. ( M ` ( F ` W ) ) ) ( ( X N ( F ` Z ) ) ` A ) ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( ( ( F ` Z ) N ( F ` W ) ) ` ( ( Z G W ) ` k ) ) ( <. ( M ` X ) , ( M ` ( F ` Z ) ) >. .o. ( M ` ( F ` W ) ) ) ( ( X N ( F ` Z ) ) ` A ) ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) with typecode |- |
| 62 |
47 61
|
eqtrd |
Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( X N ( F ` W ) ) ` ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( X N ( F ` W ) ) ` ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) with typecode |- |
| 63 |
62
|
eqeq2d |
Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( ( X N ( F ` W ) ) ` g ) = ( ( X N ( F ` W ) ) ` ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) <-> ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( ( X N ( F ` W ) ) ` g ) = ( ( X N ( F ` W ) ) ` ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) <-> ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) ) with typecode |- |
| 64 |
|
f1of1 |
|
| 65 |
28 64
|
syl |
|
| 66 |
65
|
ad2antrr |
|
| 67 |
|
simplr |
|
| 68 |
38
|
funcrcl2 |
|
| 69 |
15 2 4 68 39 41 42 43 46
|
catcocl |
|
| 70 |
|
f1fveq |
|
| 71 |
66 67 69 70
|
syl12anc |
|
| 72 |
63 71
|
bitr3d |
Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) with typecode |- |
| 73 |
72
|
3adantl3 |
Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) /\ k e. ( Z H W ) ) -> ( ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) /\ k e. ( Z H W ) ) -> ( ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) with typecode |- |
| 74 |
37 73
|
bitrd |
Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) /\ k e. ( Z H W ) ) -> ( h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) /\ k e. ( Z H W ) ) -> ( h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) with typecode |- |
| 75 |
74
|
reubidva |
Could not format ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) -> ( E! k e. ( Z H W ) h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> E! k e. ( Z H W ) g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) : No typesetting found for |- ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) -> ( E! k e. ( Z H W ) h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> E! k e. ( Z H W ) g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) with typecode |- |
| 76 |
31 35 75
|
ralxfrd2 |
Could not format ( ph -> ( A. h e. ( Y J ( K ` W ) ) E! k e. ( Z H W ) h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> A. g e. ( X I ( F ` W ) ) E! k e. ( Z H W ) g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) : No typesetting found for |- ( ph -> ( A. h e. ( Y J ( K ` W ) ) E! k e. ( Z H W ) h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> A. g e. ( X I ( F ` W ) ) E! k e. ( Z H W ) g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) with typecode |- |