Metamath Proof Explorer


Theorem usgr1vr

Description: A simple graph with one vertex has no edges. (Contributed by AV, 18-Oct-2020) (Revised by AV, 21-Mar-2021) (Proof shortened by AV, 2-Apr-2021)

Ref Expression
Assertion usgr1vr AXVtxG=AGUSGraphiEdgG=

Proof

Step Hyp Ref Expression
1 usgruhgr GUSGraphGUHGraph
2 1 adantl AXVtxG=AGUSGraphGUHGraph
3 fveq2 VtxG=AVtxG=A
4 hashsng AXA=1
5 3 4 sylan9eqr AXVtxG=AVtxG=1
6 5 adantr AXVtxG=AGUSGraphVtxG=1
7 eqid VtxG=VtxG
8 eqid iEdgG=iEdgG
9 7 8 usgrislfuspgr GUSGraphGUSHGraphiEdgG:domiEdgGx𝒫VtxG|2x
10 9 simprbi GUSGraphiEdgG:domiEdgGx𝒫VtxG|2x
11 10 adantl AXVtxG=AGUSGraphiEdgG:domiEdgGx𝒫VtxG|2x
12 eqid x𝒫VtxG|2x=x𝒫VtxG|2x
13 7 8 12 lfuhgr1v0e GUHGraphVtxG=1iEdgG:domiEdgGx𝒫VtxG|2xEdgG=
14 2 6 11 13 syl3anc AXVtxG=AGUSGraphEdgG=
15 uhgriedg0edg0 GUHGraphEdgG=iEdgG=
16 1 15 syl GUSGraphEdgG=iEdgG=
17 16 adantl AXVtxG=AGUSGraphEdgG=iEdgG=
18 14 17 mpbid AXVtxG=AGUSGraphiEdgG=
19 18 ex AXVtxG=AGUSGraphiEdgG=