Metamath Proof Explorer


Theorem usgr2trlncl

Description: In a simple graph, any trail of length 2 does not start and end at the same vertex. (Contributed by AV, 5-Jun-2021) (Proof shortened by AV, 31-Oct-2021)

Ref Expression
Assertion usgr2trlncl GUSGraphF=2FTrailsGPP0P2

Proof

Step Hyp Ref Expression
1 usgrupgr GUSGraphGUPGraph
2 eqid VtxG=VtxG
3 eqid iEdgG=iEdgG
4 2 3 upgrf1istrl GUPGraphFTrailsGPF:0..^F1-1domiEdgGP:0FVtxGi0..^FiEdgGFi=PiPi+1
5 1 4 syl GUSGraphFTrailsGPF:0..^F1-1domiEdgGP:0FVtxGi0..^FiEdgGFi=PiPi+1
6 eqidd F=2F=F
7 oveq2 F=20..^F=0..^2
8 fzo0to2pr 0..^2=01
9 7 8 eqtrdi F=20..^F=01
10 eqidd F=2domiEdgG=domiEdgG
11 6 9 10 f1eq123d F=2F:0..^F1-1domiEdgGF:011-1domiEdgG
12 9 raleqdv F=2i0..^FiEdgGFi=PiPi+1i01iEdgGFi=PiPi+1
13 2wlklem i01iEdgGFi=PiPi+1iEdgGF0=P0P1iEdgGF1=P1P2
14 12 13 bitrdi F=2i0..^FiEdgGFi=PiPi+1iEdgGF0=P0P1iEdgGF1=P1P2
15 11 14 anbi12d F=2F:0..^F1-1domiEdgGi0..^FiEdgGFi=PiPi+1F:011-1domiEdgGiEdgGF0=P0P1iEdgGF1=P1P2
16 15 adantl GUSGraphF=2F:0..^F1-1domiEdgGi0..^FiEdgGFi=PiPi+1F:011-1domiEdgGiEdgGF0=P0P1iEdgGF1=P1P2
17 c0ex 0V
18 1ex 1V
19 17 18 pm3.2i 0V1V
20 0ne1 01
21 eqid 01=01
22 21 f12dfv 0V1V01F:011-1domiEdgGF:01domiEdgGF0F1
23 19 20 22 mp2an F:011-1domiEdgGF:01domiEdgGF0F1
24 eqid EdgG=EdgG
25 3 24 usgrf1oedg GUSGraphiEdgG:domiEdgG1-1 ontoEdgG
26 f1of1 iEdgG:domiEdgG1-1 ontoEdgGiEdgG:domiEdgG1-1EdgG
27 id F:01domiEdgGF:01domiEdgG
28 17 prid1 001
29 28 a1i F:01domiEdgG001
30 27 29 ffvelcdmd F:01domiEdgGF0domiEdgG
31 18 prid2 101
32 31 a1i F:01domiEdgG101
33 27 32 ffvelcdmd F:01domiEdgGF1domiEdgG
34 30 33 jca F:01domiEdgGF0domiEdgGF1domiEdgG
35 34 anim1ci F:01domiEdgGiEdgG:domiEdgG1-1EdgGiEdgG:domiEdgG1-1EdgGF0domiEdgGF1domiEdgG
36 f1veqaeq iEdgG:domiEdgG1-1EdgGF0domiEdgGF1domiEdgGiEdgGF0=iEdgGF1F0=F1
37 35 36 syl F:01domiEdgGiEdgG:domiEdgG1-1EdgGiEdgGF0=iEdgGF1F0=F1
38 37 necon3d F:01domiEdgGiEdgG:domiEdgG1-1EdgGF0F1iEdgGF0iEdgGF1
39 simpl iEdgGF0=P0P1iEdgGF1=P1P2iEdgGF0=P0P1
40 simpr iEdgGF0=P0P1iEdgGF1=P1P2iEdgGF1=P1P2
41 39 40 neeq12d iEdgGF0=P0P1iEdgGF1=P1P2iEdgGF0iEdgGF1P0P1P1P2
42 preq1 P0=P2P0P1=P2P1
43 prcom P2P1=P1P2
44 42 43 eqtrdi P0=P2P0P1=P1P2
45 44 necon3i P0P1P1P2P0P2
46 41 45 syl6bi iEdgGF0=P0P1iEdgGF1=P1P2iEdgGF0iEdgGF1P0P2
47 46 com12 iEdgGF0iEdgGF1iEdgGF0=P0P1iEdgGF1=P1P2P0P2
48 47 a1d iEdgGF0iEdgGF1GUSGraphiEdgGF0=P0P1iEdgGF1=P1P2P0P2
49 38 48 syl6 F:01domiEdgGiEdgG:domiEdgG1-1EdgGF0F1GUSGraphiEdgGF0=P0P1iEdgGF1=P1P2P0P2
50 49 expcom iEdgG:domiEdgG1-1EdgGF:01domiEdgGF0F1GUSGraphiEdgGF0=P0P1iEdgGF1=P1P2P0P2
51 50 impd iEdgG:domiEdgG1-1EdgGF:01domiEdgGF0F1GUSGraphiEdgGF0=P0P1iEdgGF1=P1P2P0P2
52 51 com23 iEdgG:domiEdgG1-1EdgGGUSGraphF:01domiEdgGF0F1iEdgGF0=P0P1iEdgGF1=P1P2P0P2
53 26 52 syl iEdgG:domiEdgG1-1 ontoEdgGGUSGraphF:01domiEdgGF0F1iEdgGF0=P0P1iEdgGF1=P1P2P0P2
54 25 53 mpcom GUSGraphF:01domiEdgGF0F1iEdgGF0=P0P1iEdgGF1=P1P2P0P2
55 23 54 biimtrid GUSGraphF:011-1domiEdgGiEdgGF0=P0P1iEdgGF1=P1P2P0P2
56 55 impd GUSGraphF:011-1domiEdgGiEdgGF0=P0P1iEdgGF1=P1P2P0P2
57 56 adantr GUSGraphF=2F:011-1domiEdgGiEdgGF0=P0P1iEdgGF1=P1P2P0P2
58 16 57 sylbid GUSGraphF=2F:0..^F1-1domiEdgGi0..^FiEdgGFi=PiPi+1P0P2
59 58 com12 F:0..^F1-1domiEdgGi0..^FiEdgGFi=PiPi+1GUSGraphF=2P0P2
60 59 3adant2 F:0..^F1-1domiEdgGP:0FVtxGi0..^FiEdgGFi=PiPi+1GUSGraphF=2P0P2
61 60 expdcom GUSGraphF=2F:0..^F1-1domiEdgGP:0FVtxGi0..^FiEdgGFi=PiPi+1P0P2
62 61 com23 GUSGraphF:0..^F1-1domiEdgGP:0FVtxGi0..^FiEdgGFi=PiPi+1F=2P0P2
63 5 62 sylbid GUSGraphFTrailsGPF=2P0P2
64 63 com23 GUSGraphF=2FTrailsGPP0P2
65 64 imp GUSGraphF=2FTrailsGPP0P2