Metamath Proof Explorer


Theorem usgr2wlkspth

Description: In a simple graph, any walk of length 2 between two different vertices is a simple path. (Contributed by Alexander van der Vekens, 2-Mar-2018) (Revised by AV, 27-Jan-2021) (Proof shortened by AV, 31-Oct-2021)

Ref Expression
Assertion usgr2wlkspth GUSGraphF=2ABFAWalksOnGBPFASPathsOnGBP

Proof

Step Hyp Ref Expression
1 simpl31 AVtxGBVtxGFVPVFWalksGPP0=APF=BGUSGraphF=2ABFWalksGP
2 simp2 FWalksGPP0=APF=BP0=A
3 simp3 FWalksGPP0=APF=BPF=B
4 2 3 neeq12d FWalksGPP0=APF=BP0PFAB
5 4 bicomd FWalksGPP0=APF=BABP0PF
6 5 3anbi3d FWalksGPP0=APF=BGUSGraphF=2ABGUSGraphF=2P0PF
7 usgr2wlkspthlem1 FWalksGPGUSGraphF=2P0PFFunF-1
8 7 ex FWalksGPGUSGraphF=2P0PFFunF-1
9 8 3ad2ant1 FWalksGPP0=APF=BGUSGraphF=2P0PFFunF-1
10 6 9 sylbid FWalksGPP0=APF=BGUSGraphF=2ABFunF-1
11 10 3ad2ant3 AVtxGBVtxGFVPVFWalksGPP0=APF=BGUSGraphF=2ABFunF-1
12 11 imp AVtxGBVtxGFVPVFWalksGPP0=APF=BGUSGraphF=2ABFunF-1
13 istrl FTrailsGPFWalksGPFunF-1
14 1 12 13 sylanbrc AVtxGBVtxGFVPVFWalksGPP0=APF=BGUSGraphF=2ABFTrailsGP
15 usgr2wlkspthlem2 FWalksGPGUSGraphF=2P0PFFunP-1
16 15 ex FWalksGPGUSGraphF=2P0PFFunP-1
17 16 3ad2ant1 FWalksGPP0=APF=BGUSGraphF=2P0PFFunP-1
18 6 17 sylbid FWalksGPP0=APF=BGUSGraphF=2ABFunP-1
19 18 3ad2ant3 AVtxGBVtxGFVPVFWalksGPP0=APF=BGUSGraphF=2ABFunP-1
20 19 imp AVtxGBVtxGFVPVFWalksGPP0=APF=BGUSGraphF=2ABFunP-1
21 isspth FSPathsGPFTrailsGPFunP-1
22 14 20 21 sylanbrc AVtxGBVtxGFVPVFWalksGPP0=APF=BGUSGraphF=2ABFSPathsGP
23 3simpc FWalksGPP0=APF=BP0=APF=B
24 23 3ad2ant3 AVtxGBVtxGFVPVFWalksGPP0=APF=BP0=APF=B
25 24 adantr AVtxGBVtxGFVPVFWalksGPP0=APF=BGUSGraphF=2ABP0=APF=B
26 3anass FSPathsGPP0=APF=BFSPathsGPP0=APF=B
27 22 25 26 sylanbrc AVtxGBVtxGFVPVFWalksGPP0=APF=BGUSGraphF=2ABFSPathsGPP0=APF=B
28 3simpa AVtxGBVtxGFVPVFWalksGPP0=APF=BAVtxGBVtxGFVPV
29 28 adantr AVtxGBVtxGFVPVFWalksGPP0=APF=BGUSGraphF=2ABAVtxGBVtxGFVPV
30 eqid VtxG=VtxG
31 30 isspthonpth AVtxGBVtxGFVPVFASPathsOnGBPFSPathsGPP0=APF=B
32 29 31 syl AVtxGBVtxGFVPVFWalksGPP0=APF=BGUSGraphF=2ABFASPathsOnGBPFSPathsGPP0=APF=B
33 27 32 mpbird AVtxGBVtxGFVPVFWalksGPP0=APF=BGUSGraphF=2ABFASPathsOnGBP
34 33 ex AVtxGBVtxGFVPVFWalksGPP0=APF=BGUSGraphF=2ABFASPathsOnGBP
35 30 wlkonprop FAWalksOnGBPGVAVtxGBVtxGFVPVFWalksGPP0=APF=B
36 3simpc GVAVtxGBVtxGAVtxGBVtxG
37 36 3anim1i GVAVtxGBVtxGFVPVFWalksGPP0=APF=BAVtxGBVtxGFVPVFWalksGPP0=APF=B
38 35 37 syl FAWalksOnGBPAVtxGBVtxGFVPVFWalksGPP0=APF=B
39 34 38 syl11 GUSGraphF=2ABFAWalksOnGBPFASPathsOnGBP
40 spthonpthon FASPathsOnGBPFAPathsOnGBP
41 pthontrlon FAPathsOnGBPFATrailsOnGBP
42 trlsonwlkon FATrailsOnGBPFAWalksOnGBP
43 40 41 42 3syl FASPathsOnGBPFAWalksOnGBP
44 39 43 impbid1 GUSGraphF=2ABFAWalksOnGBPFASPathsOnGBP