Description: In a simple graph, any walk of length 2 between two different vertices is a simple path. (Contributed by Alexander van der Vekens, 2-Mar-2018) (Revised by AV, 27-Jan-2021) (Proof shortened by AV, 31-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | usgr2wlkspth | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl31 | |
|
2 | simp2 | |
|
3 | simp3 | |
|
4 | 2 3 | neeq12d | |
5 | 4 | bicomd | |
6 | 5 | 3anbi3d | |
7 | usgr2wlkspthlem1 | |
|
8 | 7 | ex | |
9 | 8 | 3ad2ant1 | |
10 | 6 9 | sylbid | |
11 | 10 | 3ad2ant3 | |
12 | 11 | imp | |
13 | istrl | |
|
14 | 1 12 13 | sylanbrc | |
15 | usgr2wlkspthlem2 | |
|
16 | 15 | ex | |
17 | 16 | 3ad2ant1 | |
18 | 6 17 | sylbid | |
19 | 18 | 3ad2ant3 | |
20 | 19 | imp | |
21 | isspth | |
|
22 | 14 20 21 | sylanbrc | |
23 | 3simpc | |
|
24 | 23 | 3ad2ant3 | |
25 | 24 | adantr | |
26 | 3anass | |
|
27 | 22 25 26 | sylanbrc | |
28 | 3simpa | |
|
29 | 28 | adantr | |
30 | eqid | |
|
31 | 30 | isspthonpth | |
32 | 29 31 | syl | |
33 | 27 32 | mpbird | |
34 | 33 | ex | |
35 | 30 | wlkonprop | |
36 | 3simpc | |
|
37 | 36 | 3anim1i | |
38 | 35 37 | syl | |
39 | 34 38 | syl11 | |
40 | spthonpthon | |
|
41 | pthontrlon | |
|
42 | trlsonwlkon | |
|
43 | 40 41 42 | 3syl | |
44 | 39 43 | impbid1 | |