Metamath Proof Explorer


Theorem usgrexmpl1lem

Description: Lemma for usgrexmpl1 . (Contributed by AV, 2-Aug-2025)

Ref Expression
Hypotheses usgrexmpl1.v V = 0 5
usgrexmpl1.e E = ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩
Assertion usgrexmpl1lem E : dom E 1-1 e 𝒫 V | e = 2

Proof

Step Hyp Ref Expression
1 usgrexmpl1.v V = 0 5
2 usgrexmpl1.e E = ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩
3 prex 0 1 V
4 prex 0 2 V
5 prex 1 2 V
6 3 4 5 3pm3.2i 0 1 V 0 2 V 1 2 V
7 prex 0 3 V
8 prex 3 4 V
9 prex 3 5 V
10 prex 4 5 V
11 8 9 10 3pm3.2i 3 4 V 3 5 V 4 5 V
12 6 7 11 3pm3.2i 0 1 V 0 2 V 1 2 V 0 3 V 3 4 V 3 5 V 4 5 V
13 0nn0 0 0
14 1nn0 1 0
15 13 14 pm3.2i 0 0 1 0
16 2nn0 2 0
17 13 16 pm3.2i 0 0 2 0
18 15 17 pm3.2i 0 0 1 0 0 0 2 0
19 ax-1ne0 1 0
20 1ne2 1 2
21 19 20 pm3.2i 1 0 1 2
22 21 olci 0 0 0 2 1 0 1 2
23 prneimg 0 0 1 0 0 0 2 0 0 0 0 2 1 0 1 2 0 1 0 2
24 18 22 23 mp2 0 1 0 2
25 14 16 pm3.2i 1 0 2 0
26 15 25 pm3.2i 0 0 1 0 1 0 2 0
27 0ne1 0 1
28 0ne2 0 2
29 27 28 pm3.2i 0 1 0 2
30 29 orci 0 1 0 2 1 1 1 2
31 prneimg 0 0 1 0 1 0 2 0 0 1 0 2 1 1 1 2 0 1 1 2
32 26 30 31 mp2 0 1 1 2
33 3nn0 3 0
34 13 33 pm3.2i 0 0 3 0
35 15 34 pm3.2i 0 0 1 0 0 0 3 0
36 1re 1
37 1lt3 1 < 3
38 36 37 ltneii 1 3
39 19 38 pm3.2i 1 0 1 3
40 39 olci 0 0 0 3 1 0 1 3
41 prneimg 0 0 1 0 0 0 3 0 0 0 0 3 1 0 1 3 0 1 0 3
42 35 40 41 mp2 0 1 0 3
43 24 32 42 3pm3.2i 0 1 0 2 0 1 1 2 0 1 0 3
44 4nn0 4 0
45 33 44 pm3.2i 3 0 4 0
46 15 45 pm3.2i 0 0 1 0 3 0 4 0
47 0re 0
48 3pos 0 < 3
49 47 48 ltneii 0 3
50 4pos 0 < 4
51 47 50 ltneii 0 4
52 49 51 pm3.2i 0 3 0 4
53 52 orci 0 3 0 4 1 3 1 4
54 prneimg 0 0 1 0 3 0 4 0 0 3 0 4 1 3 1 4 0 1 3 4
55 46 53 54 mp2 0 1 3 4
56 5nn0 5 0
57 33 56 pm3.2i 3 0 5 0
58 15 57 pm3.2i 0 0 1 0 3 0 5 0
59 5pos 0 < 5
60 47 59 ltneii 0 5
61 49 60 pm3.2i 0 3 0 5
62 61 orci 0 3 0 5 1 3 1 5
63 prneimg 0 0 1 0 3 0 5 0 0 3 0 5 1 3 1 5 0 1 3 5
64 58 62 63 mp2 0 1 3 5
65 44 56 pm3.2i 4 0 5 0
66 15 65 pm3.2i 0 0 1 0 4 0 5 0
67 51 60 pm3.2i 0 4 0 5
68 67 orci 0 4 0 5 1 4 1 5
69 prneimg 0 0 1 0 4 0 5 0 0 4 0 5 1 4 1 5 0 1 4 5
70 66 68 69 mp2 0 1 4 5
71 55 64 70 3pm3.2i 0 1 3 4 0 1 3 5 0 1 4 5
72 43 71 pm3.2i 0 1 0 2 0 1 1 2 0 1 0 3 0 1 3 4 0 1 3 5 0 1 4 5
73 17 25 pm3.2i 0 0 2 0 1 0 2 0
74 29 orci 0 1 0 2 2 1 2 2
75 prneimg 0 0 2 0 1 0 2 0 0 1 0 2 2 1 2 2 0 2 1 2
76 73 74 75 mp2 0 2 1 2
77 17 34 pm3.2i 0 0 2 0 0 0 3 0
78 2ne0 2 0
79 2re 2
80 2lt3 2 < 3
81 79 80 ltneii 2 3
82 78 81 pm3.2i 2 0 2 3
83 82 olci 0 0 0 3 2 0 2 3
84 prneimg 0 0 2 0 0 0 3 0 0 0 0 3 2 0 2 3 0 2 0 3
85 77 83 84 mp2 0 2 0 3
86 76 85 pm3.2i 0 2 1 2 0 2 0 3
87 17 45 pm3.2i 0 0 2 0 3 0 4 0
88 52 orci 0 3 0 4 2 3 2 4
89 prneimg 0 0 2 0 3 0 4 0 0 3 0 4 2 3 2 4 0 2 3 4
90 87 88 89 mp2 0 2 3 4
91 17 57 pm3.2i 0 0 2 0 3 0 5 0
92 61 orci 0 3 0 5 2 3 2 5
93 prneimg 0 0 2 0 3 0 5 0 0 3 0 5 2 3 2 5 0 2 3 5
94 91 92 93 mp2 0 2 3 5
95 17 65 pm3.2i 0 0 2 0 4 0 5 0
96 67 orci 0 4 0 5 2 4 2 5
97 prneimg 0 0 2 0 4 0 5 0 0 4 0 5 2 4 2 5 0 2 4 5
98 95 96 97 mp2 0 2 4 5
99 90 94 98 3pm3.2i 0 2 3 4 0 2 3 5 0 2 4 5
100 86 99 pm3.2i 0 2 1 2 0 2 0 3 0 2 3 4 0 2 3 5 0 2 4 5
101 25 34 pm3.2i 1 0 2 0 0 0 3 0
102 39 orci 1 0 1 3 2 0 2 3
103 prneimg 1 0 2 0 0 0 3 0 1 0 1 3 2 0 2 3 1 2 0 3
104 101 102 103 mp2 1 2 0 3
105 25 45 pm3.2i 1 0 2 0 3 0 4 0
106 1lt4 1 < 4
107 36 106 ltneii 1 4
108 38 107 pm3.2i 1 3 1 4
109 108 orci 1 3 1 4 2 3 2 4
110 prneimg 1 0 2 0 3 0 4 0 1 3 1 4 2 3 2 4 1 2 3 4
111 105 109 110 mp2 1 2 3 4
112 25 57 pm3.2i 1 0 2 0 3 0 5 0
113 1lt5 1 < 5
114 36 113 ltneii 1 5
115 38 114 pm3.2i 1 3 1 5
116 115 orci 1 3 1 5 2 3 2 5
117 prneimg 1 0 2 0 3 0 5 0 1 3 1 5 2 3 2 5 1 2 3 5
118 112 116 117 mp2 1 2 3 5
119 25 65 pm3.2i 1 0 2 0 4 0 5 0
120 107 114 pm3.2i 1 4 1 5
121 120 orci 1 4 1 5 2 4 2 5
122 prneimg 1 0 2 0 4 0 5 0 1 4 1 5 2 4 2 5 1 2 4 5
123 119 121 122 mp2 1 2 4 5
124 111 118 123 3pm3.2i 1 2 3 4 1 2 3 5 1 2 4 5
125 104 124 pm3.2i 1 2 0 3 1 2 3 4 1 2 3 5 1 2 4 5
126 72 100 125 3pm3.2i 0 1 0 2 0 1 1 2 0 1 0 3 0 1 3 4 0 1 3 5 0 1 4 5 0 2 1 2 0 2 0 3 0 2 3 4 0 2 3 5 0 2 4 5 1 2 0 3 1 2 3 4 1 2 3 5 1 2 4 5
127 34 45 pm3.2i 0 0 3 0 3 0 4 0
128 52 orci 0 3 0 4 3 3 3 4
129 prneimg 0 0 3 0 3 0 4 0 0 3 0 4 3 3 3 4 0 3 3 4
130 127 128 129 mp2 0 3 3 4
131 34 57 pm3.2i 0 0 3 0 3 0 5 0
132 61 orci 0 3 0 5 3 3 3 5
133 prneimg 0 0 3 0 3 0 5 0 0 3 0 5 3 3 3 5 0 3 3 5
134 131 132 133 mp2 0 3 3 5
135 34 65 pm3.2i 0 0 3 0 4 0 5 0
136 67 orci 0 4 0 5 3 4 3 5
137 prneimg 0 0 3 0 4 0 5 0 0 4 0 5 3 4 3 5 0 3 4 5
138 135 136 137 mp2 0 3 4 5
139 130 134 138 3pm3.2i 0 3 3 4 0 3 3 5 0 3 4 5
140 45 57 pm3.2i 3 0 4 0 3 0 5 0
141 3re 3
142 3lt4 3 < 4
143 141 142 ltneii 3 4
144 143 necomi 4 3
145 4re 4
146 4lt5 4 < 5
147 145 146 ltneii 4 5
148 144 147 pm3.2i 4 3 4 5
149 148 olci 3 3 3 5 4 3 4 5
150 prneimg 3 0 4 0 3 0 5 0 3 3 3 5 4 3 4 5 3 4 3 5
151 140 149 150 mp2 3 4 3 5
152 45 65 pm3.2i 3 0 4 0 4 0 5 0
153 3lt5 3 < 5
154 141 153 ltneii 3 5
155 143 154 pm3.2i 3 4 3 5
156 155 orci 3 4 3 5 4 4 4 5
157 prneimg 3 0 4 0 4 0 5 0 3 4 3 5 4 4 4 5 3 4 4 5
158 152 156 157 mp2 3 4 4 5
159 57 65 pm3.2i 3 0 5 0 4 0 5 0
160 155 orci 3 4 3 5 5 4 5 5
161 prneimg 3 0 5 0 4 0 5 0 3 4 3 5 5 4 5 5 3 5 4 5
162 159 160 161 mp2 3 5 4 5
163 151 158 162 3pm3.2i 3 4 3 5 3 4 4 5 3 5 4 5
164 139 163 pm3.2i 0 3 3 4 0 3 3 5 0 3 4 5 3 4 3 5 3 4 4 5 3 5 4 5
165 126 164 pm3.2i 0 1 0 2 0 1 1 2 0 1 0 3 0 1 3 4 0 1 3 5 0 1 4 5 0 2 1 2 0 2 0 3 0 2 3 4 0 2 3 5 0 2 4 5 1 2 0 3 1 2 3 4 1 2 3 5 1 2 4 5 0 3 3 4 0 3 3 5 0 3 4 5 3 4 3 5 3 4 4 5 3 5 4 5
166 12 165 pm3.2i 0 1 V 0 2 V 1 2 V 0 3 V 3 4 V 3 5 V 4 5 V 0 1 0 2 0 1 1 2 0 1 0 3 0 1 3 4 0 1 3 5 0 1 4 5 0 2 1 2 0 2 0 3 0 2 3 4 0 2 3 5 0 2 4 5 1 2 0 3 1 2 3 4 1 2 3 5 1 2 4 5 0 3 3 4 0 3 3 5 0 3 4 5 3 4 3 5 3 4 4 5 3 5 4 5
167 s7f1o 0 1 V 0 2 V 1 2 V 0 3 V 3 4 V 3 5 V 4 5 V 0 1 0 2 0 1 1 2 0 1 0 3 0 1 3 4 0 1 3 5 0 1 4 5 0 2 1 2 0 2 0 3 0 2 3 4 0 2 3 5 0 2 4 5 1 2 0 3 1 2 3 4 1 2 3 5 1 2 4 5 0 3 3 4 0 3 3 5 0 3 4 5 3 4 3 5 3 4 4 5 3 5 4 5 E = ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩ E : 0 ..^ 7 1-1 onto 0 1 0 2 1 2 0 3 3 4 3 5 4 5
168 167 imp 0 1 V 0 2 V 1 2 V 0 3 V 3 4 V 3 5 V 4 5 V 0 1 0 2 0 1 1 2 0 1 0 3 0 1 3 4 0 1 3 5 0 1 4 5 0 2 1 2 0 2 0 3 0 2 3 4 0 2 3 5 0 2 4 5 1 2 0 3 1 2 3 4 1 2 3 5 1 2 4 5 0 3 3 4 0 3 3 5 0 3 4 5 3 4 3 5 3 4 4 5 3 5 4 5 E = ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩ E : 0 ..^ 7 1-1 onto 0 1 0 2 1 2 0 3 3 4 3 5 4 5
169 s7len ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩ = 7
170 169 oveq2i 0 ..^ ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩ = 0 ..^ 7
171 f1oeq2 0 ..^ ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩ = 0 ..^ 7 E : 0 ..^ ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩ 1-1 onto 0 1 0 2 1 2 0 3 3 4 3 5 4 5 E : 0 ..^ 7 1-1 onto 0 1 0 2 1 2 0 3 3 4 3 5 4 5
172 170 171 ax-mp E : 0 ..^ ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩ 1-1 onto 0 1 0 2 1 2 0 3 3 4 3 5 4 5 E : 0 ..^ 7 1-1 onto 0 1 0 2 1 2 0 3 3 4 3 5 4 5
173 168 172 sylibr 0 1 V 0 2 V 1 2 V 0 3 V 3 4 V 3 5 V 4 5 V 0 1 0 2 0 1 1 2 0 1 0 3 0 1 3 4 0 1 3 5 0 1 4 5 0 2 1 2 0 2 0 3 0 2 3 4 0 2 3 5 0 2 4 5 1 2 0 3 1 2 3 4 1 2 3 5 1 2 4 5 0 3 3 4 0 3 3 5 0 3 4 5 3 4 3 5 3 4 4 5 3 5 4 5 E = ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩ E : 0 ..^ ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩ 1-1 onto 0 1 0 2 1 2 0 3 3 4 3 5 4 5
174 2 dmeqi dom E = dom ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩
175 s7cli ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩ Word V
176 wrddm ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩ Word V dom ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩ = 0 ..^ ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩
177 175 176 ax-mp dom ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩ = 0 ..^ ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩
178 174 177 eqtri dom E = 0 ..^ ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩
179 f1oeq2 dom E = 0 ..^ ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩ E : dom E 1-1 onto 0 1 0 2 1 2 0 3 3 4 3 5 4 5 E : 0 ..^ ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩ 1-1 onto 0 1 0 2 1 2 0 3 3 4 3 5 4 5
180 178 179 ax-mp E : dom E 1-1 onto 0 1 0 2 1 2 0 3 3 4 3 5 4 5 E : 0 ..^ ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩ 1-1 onto 0 1 0 2 1 2 0 3 3 4 3 5 4 5
181 173 180 sylibr 0 1 V 0 2 V 1 2 V 0 3 V 3 4 V 3 5 V 4 5 V 0 1 0 2 0 1 1 2 0 1 0 3 0 1 3 4 0 1 3 5 0 1 4 5 0 2 1 2 0 2 0 3 0 2 3 4 0 2 3 5 0 2 4 5 1 2 0 3 1 2 3 4 1 2 3 5 1 2 4 5 0 3 3 4 0 3 3 5 0 3 4 5 3 4 3 5 3 4 4 5 3 5 4 5 E = ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩ E : dom E 1-1 onto 0 1 0 2 1 2 0 3 3 4 3 5 4 5
182 f1of1 E : dom E 1-1 onto 0 1 0 2 1 2 0 3 3 4 3 5 4 5 E : dom E 1-1 0 1 0 2 1 2 0 3 3 4 3 5 4 5
183 181 182 syl 0 1 V 0 2 V 1 2 V 0 3 V 3 4 V 3 5 V 4 5 V 0 1 0 2 0 1 1 2 0 1 0 3 0 1 3 4 0 1 3 5 0 1 4 5 0 2 1 2 0 2 0 3 0 2 3 4 0 2 3 5 0 2 4 5 1 2 0 3 1 2 3 4 1 2 3 5 1 2 4 5 0 3 3 4 0 3 3 5 0 3 4 5 3 4 3 5 3 4 4 5 3 5 4 5 E = ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩ E : dom E 1-1 0 1 0 2 1 2 0 3 3 4 3 5 4 5
184 0elfz 5 0 0 0 5
185 56 184 ax-mp 0 0 5
186 5re 5
187 36 186 113 ltleii 1 5
188 elfz2nn0 1 0 5 1 0 5 0 1 5
189 14 56 187 188 mpbir3an 1 0 5
190 prssi 0 0 5 1 0 5 0 1 0 5
191 185 189 190 mp2an 0 1 0 5
192 2lt5 2 < 5
193 79 186 192 ltleii 2 5
194 elfz2nn0 2 0 5 2 0 5 0 2 5
195 16 56 193 194 mpbir3an 2 0 5
196 prssi 0 0 5 2 0 5 0 2 0 5
197 185 195 196 mp2an 0 2 0 5
198 prssi 1 0 5 2 0 5 1 2 0 5
199 189 195 198 mp2an 1 2 0 5
200 sseq1 e = 0 1 e 0 5 0 1 0 5
201 sseq1 e = 0 2 e 0 5 0 2 0 5
202 sseq1 e = 1 2 e 0 5 1 2 0 5
203 200 201 202 raltpg 0 1 V 0 2 V 1 2 V e 0 1 0 2 1 2 e 0 5 0 1 0 5 0 2 0 5 1 2 0 5
204 6 203 ax-mp e 0 1 0 2 1 2 e 0 5 0 1 0 5 0 2 0 5 1 2 0 5
205 191 197 199 204 mpbir3an e 0 1 0 2 1 2 e 0 5
206 141 186 153 ltleii 3 5
207 elfz2nn0 3 0 5 3 0 5 0 3 5
208 33 56 206 207 mpbir3an 3 0 5
209 prssi 0 0 5 3 0 5 0 3 0 5
210 185 208 209 mp2an 0 3 0 5
211 sseq1 e = 0 3 e 0 5 0 3 0 5
212 7 211 ralsn e 0 3 e 0 5 0 3 0 5
213 210 212 mpbir e 0 3 e 0 5
214 ralunb e 0 1 0 2 1 2 0 3 e 0 5 e 0 1 0 2 1 2 e 0 5 e 0 3 e 0 5
215 205 213 214 mpbir2an e 0 1 0 2 1 2 0 3 e 0 5
216 145 186 146 ltleii 4 5
217 elfz2nn0 4 0 5 4 0 5 0 4 5
218 44 56 216 217 mpbir3an 4 0 5
219 prssi 3 0 5 4 0 5 3 4 0 5
220 208 218 219 mp2an 3 4 0 5
221 nn0fz0 5 0 5 0 5
222 56 221 mpbi 5 0 5
223 prssi 3 0 5 5 0 5 3 5 0 5
224 208 222 223 mp2an 3 5 0 5
225 prssi 4 0 5 5 0 5 4 5 0 5
226 218 222 225 mp2an 4 5 0 5
227 sseq1 e = 3 4 e 0 5 3 4 0 5
228 sseq1 e = 3 5 e 0 5 3 5 0 5
229 sseq1 e = 4 5 e 0 5 4 5 0 5
230 227 228 229 raltpg 3 4 V 3 5 V 4 5 V e 3 4 3 5 4 5 e 0 5 3 4 0 5 3 5 0 5 4 5 0 5
231 11 230 ax-mp e 3 4 3 5 4 5 e 0 5 3 4 0 5 3 5 0 5 4 5 0 5
232 220 224 226 231 mpbir3an e 3 4 3 5 4 5 e 0 5
233 ralunb e 0 1 0 2 1 2 0 3 3 4 3 5 4 5 e 0 5 e 0 1 0 2 1 2 0 3 e 0 5 e 3 4 3 5 4 5 e 0 5
234 215 232 233 mpbir2an e 0 1 0 2 1 2 0 3 3 4 3 5 4 5 e 0 5
235 pwssb 0 1 0 2 1 2 0 3 3 4 3 5 4 5 𝒫 0 5 e 0 1 0 2 1 2 0 3 3 4 3 5 4 5 e 0 5
236 234 235 mpbir 0 1 0 2 1 2 0 3 3 4 3 5 4 5 𝒫 0 5
237 1 pweqi 𝒫 V = 𝒫 0 5
238 236 237 sseqtrri 0 1 0 2 1 2 0 3 3 4 3 5 4 5 𝒫 V
239 prhash2ex 0 1 = 2
240 c0ex 0 V
241 2ex 2 V
242 240 241 28 3pm3.2i 0 V 2 V 0 2
243 hashprb 0 V 2 V 0 2 0 2 = 2
244 242 243 mpbi 0 2 = 2
245 1ex 1 V
246 245 241 20 3pm3.2i 1 V 2 V 1 2
247 hashprb 1 V 2 V 1 2 1 2 = 2
248 246 247 mpbi 1 2 = 2
249 fveqeq2 e = 0 1 e = 2 0 1 = 2
250 fveqeq2 e = 0 2 e = 2 0 2 = 2
251 fveqeq2 e = 1 2 e = 2 1 2 = 2
252 249 250 251 raltpg 0 1 V 0 2 V 1 2 V e 0 1 0 2 1 2 e = 2 0 1 = 2 0 2 = 2 1 2 = 2
253 6 252 ax-mp e 0 1 0 2 1 2 e = 2 0 1 = 2 0 2 = 2 1 2 = 2
254 239 244 248 253 mpbir3an e 0 1 0 2 1 2 e = 2
255 3ex 3 V
256 240 255 49 3pm3.2i 0 V 3 V 0 3
257 hashprb 0 V 3 V 0 3 0 3 = 2
258 256 257 mpbi 0 3 = 2
259 fveqeq2 e = 0 3 e = 2 0 3 = 2
260 7 259 ralsn e 0 3 e = 2 0 3 = 2
261 258 260 mpbir e 0 3 e = 2
262 ralunb e 0 1 0 2 1 2 0 3 e = 2 e 0 1 0 2 1 2 e = 2 e 0 3 e = 2
263 254 261 262 mpbir2an e 0 1 0 2 1 2 0 3 e = 2
264 145 elexi 4 V
265 255 264 143 3pm3.2i 3 V 4 V 3 4
266 hashprb 3 V 4 V 3 4 3 4 = 2
267 265 266 mpbi 3 4 = 2
268 186 elexi 5 V
269 255 268 154 3pm3.2i 3 V 5 V 3 5
270 hashprb 3 V 5 V 3 5 3 5 = 2
271 269 270 mpbi 3 5 = 2
272 264 268 147 3pm3.2i 4 V 5 V 4 5
273 hashprb 4 V 5 V 4 5 4 5 = 2
274 272 273 mpbi 4 5 = 2
275 fveqeq2 e = 3 4 e = 2 3 4 = 2
276 fveqeq2 e = 3 5 e = 2 3 5 = 2
277 fveqeq2 e = 4 5 e = 2 4 5 = 2
278 275 276 277 raltpg 3 4 V 3 5 V 4 5 V e 3 4 3 5 4 5 e = 2 3 4 = 2 3 5 = 2 4 5 = 2
279 11 278 ax-mp e 3 4 3 5 4 5 e = 2 3 4 = 2 3 5 = 2 4 5 = 2
280 267 271 274 279 mpbir3an e 3 4 3 5 4 5 e = 2
281 ralunb e 0 1 0 2 1 2 0 3 3 4 3 5 4 5 e = 2 e 0 1 0 2 1 2 0 3 e = 2 e 3 4 3 5 4 5 e = 2
282 263 280 281 mpbir2an e 0 1 0 2 1 2 0 3 3 4 3 5 4 5 e = 2
283 ssrab 0 1 0 2 1 2 0 3 3 4 3 5 4 5 e 𝒫 V | e = 2 0 1 0 2 1 2 0 3 3 4 3 5 4 5 𝒫 V e 0 1 0 2 1 2 0 3 3 4 3 5 4 5 e = 2
284 238 282 283 mpbir2an 0 1 0 2 1 2 0 3 3 4 3 5 4 5 e 𝒫 V | e = 2
285 f1ss E : dom E 1-1 0 1 0 2 1 2 0 3 3 4 3 5 4 5 0 1 0 2 1 2 0 3 3 4 3 5 4 5 e 𝒫 V | e = 2 E : dom E 1-1 e 𝒫 V | e = 2
286 183 284 285 sylancl 0 1 V 0 2 V 1 2 V 0 3 V 3 4 V 3 5 V 4 5 V 0 1 0 2 0 1 1 2 0 1 0 3 0 1 3 4 0 1 3 5 0 1 4 5 0 2 1 2 0 2 0 3 0 2 3 4 0 2 3 5 0 2 4 5 1 2 0 3 1 2 3 4 1 2 3 5 1 2 4 5 0 3 3 4 0 3 3 5 0 3 4 5 3 4 3 5 3 4 4 5 3 5 4 5 E = ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩ E : dom E 1-1 e 𝒫 V | e = 2
287 166 2 286 mp2an E : dom E 1-1 e 𝒫 V | e = 2